Math, asked by sristi32, 9 months ago

slove for x
 \sqrt{x - 4}  +  \sqrt{x - 10 }  \div  \sqrt{x  + 4}  -  \sqrt{x - 10}  = 5  \div 2

Attachments:

Answers

Answered by kushalchauhan07
3

Answer:

 \frac{ \sqrt{x + 4 } +  \sqrt{x - 10}  }{ \sqrt{x + 4} -  \sqrt{x - 10}  }  =  \frac{5}{2}

 \frac{ \sqrt{x + 4} +  \sqrt{x - 10}  }{ \sqrt{x + 4}  -  \sqrt{x - 10} }  \times  \frac{ \sqrt{x + 4}  +  \sqrt{x - 10} }{ \sqrt{x + 4} +  \sqrt{x - 10}  }  =  \frac{5}{2}

 \frac{( \sqrt{x + 4 })^{2} + ( \sqrt{x - 10})^{2} }{(  \sqrt{x + 4} )^{2} - ( \sqrt{x - 10})^{2}  } =  \frac{5}{2}

 \frac{( \sqrt{x})^{2} + 8 \sqrt{x} +  {4}^{2} + ( \sqrt{x})^{2}  -  20 \sqrt{x} + 10^{2} }{( \sqrt{x})^{2} +8 \sqrt{x} +  {4}^{2} -[( \sqrt{x})^{2} - 20 \sqrt{x} + 10 ^{2}] }  =  \frac{5}{2}

 \frac{x + 8 \sqrt{x} + 16 + x - 20 \sqrt{x} + 100}{x + 8 \sqrt{x} + 16 - x + 20 \sqrt{x}  - 100}  =  \frac{5}{2}

 \frac{2x + 116 - 12 \sqrt{x} }{28 \sqrt{x} - 84 }  =  \frac{5}{2}

squaring \: both \: the \: side

( \frac{2x + 116 - 12 \sqrt{x} }{28 \sqrt{x} - 84 } )^{2} =  (\frac{5}{2})^{2}

 \frac{4x + 13,456 - 144x}{784x -7,056} =  \frac{25}{4}

 \frac{13456 - 140x}{784x - 7056}  =  \frac{25}{4}

4(13456 - 140x) = 25(784x - 7056)

53,824 - 560x = 19,600x - 176,400

 - 560x - 19600x =  - 176400 - 53824

 - 20160x =  - 122,576

Answered by bsbabusona0000
2

Answer:

answer = 122567

have your answer........

Similar questions