Physics, asked by shravanilad2006, 9 months ago

slove:- If u= 8m/s, a= 6m/S2 find 'S' if v= 10m/s.​

Answers

Answered by ItzArchimedes
7

Given:

  • Initial velocity ( u ) = 8 m/s
  • Acceleration ( a ) = 6 m/s²
  • Final velocity ( v ) = 10 m/s

To find :

  • Distance ( s ) = ?

Solution:

Firstly finding the time taken

Using. ,

a = v - u/t

Simplifying

t = (v - u)/a

Substituting the given values

→ t = 10 - 8/6

→ t = 2/6

→ t = 1/3

t 0.33 s

_______________________

Now , finding distance ( s ) by using third equation of motion

S = ut + 1/2 at²

→ S = 8(0.33) + 1/2(6)(0.33)²

→ S = 2.64 + 0.3267

→ S = 2.9667 m ≈ 3 m

Hence , distance travelled 3 m ( approx )

Answered by MaIeficent
14
\large \bf \red{ \underline { \underline{Given:-}}}

• Initial velocity (u) = 8m/s

• Final velocity (v) = 10m/s

• Acceleration (a) = 6m/s²

\large \bf \blue{ \underline { \underline{To\:Find:-}}}

• The distance covered (s)


\large \bf \green{ \underline { \underline{Solution:-}}}

According to the first equation of motion

\large  \boxed{ \sf \pink{ { \rightarrow v = u + at}}}

Substituting the values:-

\sf\rightarrow 10= 8 + 6(t)

\sf\rightarrow 10 - 8 =  6(t)

\sf\rightarrow   \dfrac{2}{6}   = t

\sf\rightarrow     t = 0.33sec

According to the second equation of motion

\boxed{ \sf \orange{\rightarrow     s = ut +  \frac{1}{2} a {t}^{2} }}

Substituting the values:-

\sf \rightarrow s = 8 \times 0.33 +  \dfrac{1}{2}  \times 6 \times  {(0.33)}^{2}

\sf \rightarrow s = 2.64 + 0.3267

\sf \rightarrow s = 2.9667 = 3 approx

Distance = 3m ..... approx




Similar questions