Math, asked by EDWIN20, 2 months ago

slove out the given attachment

Attachments:

Answers

Answered by Anonymous
25

Given to prove that :-

\sf\dfrac{(sin7x + sin5x) + (sin9x + sin3x)}{(cos7x + cos5x) + (cos9x + cos3x)}  = tan6x

Concept to know:-

Here the some Trigonometric formulae were used that were :-

\sf sinC + sinD = 2sin \bigg( \dfrac{C + D}{2}  \bigg)cos \bigg( \dfrac{C - D}{2}  \bigg)

\sf cosC + cosD= 2cos \bigg( \dfrac{C + D}{2}  \bigg)cos \bigg( \dfrac{C - D}{2}  \bigg)

By using these formulae we shall simplify the numerator and denominator

Proof :-

By applying these formulae we get ,

\sf  =  \dfrac{2sin  \bigg(\dfrac{7x + 5x}{2} \bigg)cos \bigg( \dfrac{7x - 5x}{2}  \bigg)  + 2sin \bigg( \dfrac{9x + 3x}{2}  \bigg)cos \bigg( \dfrac{9x - 3x}{2} \bigg) }{2cos \bigg( \dfrac{7x + 5x}{2}  \bigg)cos \bigg( \dfrac{7x - 5x}{2} \bigg) + 2cos \bigg( \dfrac{9x + 3x}{2}  \bigg)cos \bigg( \dfrac{9x - 3x}{2} \bigg)  }

\sf   =  \dfrac{2sin  \bigg(\dfrac{12x}{2} \bigg)cos \bigg( \dfrac{2x}{2}  \bigg)  + 2sin \bigg( \dfrac{12x}{2}  \bigg)cos \bigg( \dfrac{6x}{2} \bigg) }{2cos \bigg( \dfrac{12x}{2}  \bigg)cos \bigg( \dfrac{2x}{2} \bigg) + 2cos \bigg( \dfrac{12x}{2}  \bigg)cos \bigg( \dfrac{6x}{2} \bigg)  }

\sf   =   \dfrac{2sin6xcosx +2sin6xcos3x }{2cos6xcosx +2cos6xcos3x }

Take common 2sin6x in the numerator and 2cos6x in the denominator

\sf  =  \dfrac{2sin6x(cosx + cos3x)}{2cos6x(cosx + cos3x)}

\sf =  \dfrac{2sin6x \not(cos4x)}{2cos6x \not(cos4x)}

\sf =  \dfrac{2sin6x}{2cos6x}

\sf =  \dfrac{sin6x}{cos6x}

From Trigonmetric relations,

sinA/cosA = tanA

\sf = tan6x

Hence proved !

Note :-

Kindly swipe the page to right in order to sèe the full answer.

Know more formulae:-

❒Multiple angles :-

\sf sin2A = 2sinAcosA

\sf sin2A =  \dfrac{2tanA}{1 + tan {}^{2}A }

\sf cos2A = cos {}^{2} A - sin { }^{2} A

\sf cos2A= 2cos {}^{2} A - 1

\sf cos2A = 1 - 2in {}^{2} A

\sf cos2A =  \dfrac{1 - tan {}^{2} A}{1 + tan {}^{2}A }

\sf tan2A =  \dfrac{2tanA}{1 - tan {}^{2}A }

\sf cot2A =  \dfrac{cot {}^{2} A - 1}{2cotA}

\sf sin3A = 3sinA - 4sin {}^{3} A

\sf cos3A = 4cos {}^{3} A - 3cosA

\sf tan3A =  \dfrac{3tanA - tan {}^{3}A }{1 - 3tan {}^{2} A}

❒Compound angles:-

\sf sin(A+B)= sinAcosB + sinBcosA

\sf sin(A-B) = sinAcosB- sinBcosA

\sf cos(A+B) = cosAcosB - sinAsinB

\sf cos(A-B) = cosAcosB + sinAsinB

\sf tan(A+B) = \dfrac{tanA+tanB}{1-tanAtanB}

\sf tan(A-B) = \dfrac{tanA-tanB}{1+tanAtanB}

\sf cot(A+B) = \dfrac{cotB cotA -1}{cotB + cotA}

\sf cot(A-B) = \dfrac{cotB cotA + 1}{cotB-cotA}

Similar questions