Math, asked by musabsagri, 1 month ago

slove please urgent!​

Attachments:

Answers

Answered by TrustedAnswerer19
35

Answer:

 \huge  \green{ \boxed{\sf \: a = 2}} \\  \\ \orange{ \boxed{\sf \:\: radius \:  \: r =  \sqrt{3}  \:  \: unit}} \:

Step-by-step explanation:

We know that,

General equation of a circle is :

 \sf \: a {x}^{2}  + b{y}^{2}  + 2gx + 2fy + c = 0

It will be a equation of circle if a = b

So we can say that,

If x and y are squared and the coefficient of x^2 and y^2 are same, then it is an equation of circle.

and its radius is :

 \sf \: r =  \sqrt{ {g}^{2} +  {f}^{2}  - c }  \\  \sf \:  \: and \: its \: center \: is \: ( - g, - f)

Now given that,

 \sf \: 2 {x}^{2}  + a {y}^{2}  - 3x + 2y - 1 = 0

If it is an equation of circle then the coefficient of x2 and y2 are same.

So,

 \huge  \green{ \boxed{\sf \: a = 2}}

So, equation is :

 \sf \:  \:  \: 2 {x}^{2}  + 2 {y}^{2}  - 3x + 2y - 1 = 0  \\ \sf \implies {x}^{2}  +  {y}^{2}  -  \frac{3}{2} x + y -  \frac{1}{2}  = 0 \:  \:  \:  \red{ \{ \: divided \: by \: 2 \}}

To find g and f, we will compair the given equation with general equation of circle

 \sf \: 2gx =  - \frac{3}{2} x \:  \:  \:  \therefore \: g =  -  \frac{3}{4}  \:  \:  \:  \:  \pink{and} \\  \\  \sf \: 2fy = y \:  \:  \:   \: \therefore \: f =  \frac{1}{2}   \:  \:  \:  \:  \:  \:  \pink{and \: also}\\  \\  \sf \: c =  -  \frac{1}{2}  \\  \\  \bf \: now \: radius \: \\  \sf \:  \: r =  \sqrt{ {g}^{2} +  {f}^{2}  - c }  \\  \sf \:  \:  \:  \:  \:  =   \sqrt{ {( -  \frac{3}{4} })^{2}  +  {( \frac{1}{2} })^{2} - ( -  \frac{1}{2} ) }  \\  =  \sqrt{ \frac{9}{4}  +  \frac{1}{4}  +  \frac{1}{2} }  \\  =  \sqrt{ \frac{9 + 1 + 2}{4} }  \\  =  \sqrt{ \frac{12}{4} }  \\  =  \sqrt{3}  \: unit \:  \\  \\ \orange{ \boxed{\sf \: so \: radius \:  \: r =  \sqrt{3}  \:  \: unit}}

Attachments:
Similar questions