Math, asked by tailypraful039, 10 months ago

Slove The Algebraic Expression. 2a=(2/x-x)² ​

Attachments:

Answers

Answered by MaheswariS
2

\textbf{Given:}

\textsf{Equation is}\;\mathsf{2a=\left(\dfrac{2}{x}-x\right)^2}

\textbf{To find:}

\textsf{Roots of the given polyomial equations}

\textbf{Solution:}

\mathsf{2a=\left(\dfrac{2}{x}-x\right)^2}

\mathsf{\left(\dfrac{2-x^2}{x}\right)^2=2a}

\textsf{Taking square root on bothsides, we get}

\mathsf{\dfrac{2-x^2}{x}\right=\pm\sqrt{2a}}

\mathsf{\dfrac{2-x^2}{x}\right=\pm\sqrt{2a}}

\underline{\mathsf{case(i):}}

\mathsf{\dfrac{2-x^2}{x}\right=\sqrt{2a}}

\mathsf{2-x^2=\sqrt{2a}x}

\mathsf{x^2+\sqrt{2a}x=2}

\mathsf{x^2+\sqrt{2a}x+\dfrac{a}{2}=2+\dfrac{a}{2}}

\mathsf{\left(x+\dfrac{\sqrt{a}}{\sqrt{2}}\right)^2=\dfrac{a+4}{2}}

\textsf{Taking square root,}

\mathsf{x+\dfrac{\sqrt{a}}{\sqrt{2}}=\pm\sqrt{\dfrac{a+4}{2}}}

\implies\boxed{\mathsf{x=-\dfrac{\sqrt{a}}{\sqrt{2}}\pm\sqrt{\dfrac{a+4}{2}}}}

\underline{\mathsf{case(ii):}}

\mathsf{\dfrac{2-x^2}{x}\right=-\sqrt{2a}}

\mathsf{2-x^2=-\sqrt{2a}x}

\mathsf{x^2-\sqrt{2a}x=2}

\mathsf{x^2-\sqrt{2a}x+\dfrac{a}{2}=2+\dfrac{a}{2}}

\mathsf{\left(x-\dfrac{\sqrt{a}}{\sqrt{2}}\right)^2=\dfrac{a+4}{2}}

\textsf{Taking square root,}

\mathsf{x-\dfrac{\sqrt{a}}{\sqrt{2}}=\pm\sqrt{\dfrac{a+4}{2}}}

\implies\boxed{\mathsf{x=\dfrac{\sqrt{a}}{\sqrt{2}}\pm\sqrt{\dfrac{a+4}{2}}}}

\textbf{Answer:}

\mathsf{Roots\;are\;-\dfrac{\sqrt{a}}{\sqrt{2}}\pm\sqrt{\dfrac{a+4}{2}}\;\;\&\;\;\dfrac{\sqrt{a}}{\sqrt{2}}\pm\sqrt{\dfrac{a+4}{2}}}

\textbf{Find more:}

Using the quadratic formula to solve 5x = 6x2 – 3, what are the values of x

https://brainly.in/question/14911682

Using the quadratic formula, solve the equation a square b square x square - (4b power 4-3apower4)x-12a square b square =0

https://brainly.in/question/5074987

A(x^2 + 1) = (a^2+ 1) x, a + 0 solve by formula method​

https://brainly.in/question/16238292

Similar questions