Math, asked by rafi25528, 9 months ago

Slove the
equation
differential
y'+4y/x=X3Y3​

Answers

Answered by Swarup1998
1

Differential Equations

Solution:

The given differential equation is

\quad \frac{dy}{dx}+4\frac{y}{x}=x^{3}y^{3}

\Rightarrow y^{-3}\frac{dy}{dx}+4\frac{y^{-2}}{x}=x^{3}

To reduce it in linear form, we put y^{-2}=z such that

\quad -2y^{-3}\frac{dy}{dx}=\frac{dz}{dx}

\Rightarrow y^{-3}\frac{dy}{dx}=-\frac{1}{2}\frac{dz}{dx}

So the given equation reduces to

\quad -\frac{1}{2}\frac{dz}{dx}+4\frac{z}{x}=x^{3}

\Rightarrow \frac{dz}{dx}-8\frac{z}{x}=-2x^{3}\quad.....(1)

It is a linear equation.

\therefore\text{I.F.}=e^{-8\int \frac{dx}{x}}

\quad\quad=e^{-8\:logx}

\quad\quad=e^{log(x^{-8})}

\quad\quad=x^{-8}

Now multiplying (1) by I.F., we get

\quad\frac{d}{dx}(zx^{-8})=-2x^{-5}

\Rightarrow d(zx^{-8})=-2x^{-5}dx

On integration, we have

\quad\int d(zx^{-8})=-2\int x^{-5}dx

\Rightarrow zx^{-8}=-2*\frac{x^{-4}}{-4}+C

where C is constant of integration

\Rightarrow \boxed{x^{-8}y^{-2}=\frac{1}{2}x^{-4}+C}

This is the required integral.

Differential equation problems:

1. Solve the given differential equation:

\quad y' + 4\frac{y}{x} = x^{3}y^{3}

- https://brainly.in/question/16962973

2. Find: \int \frac{dx}{x\sqrt{x^{4}-1}}.

- https://brainly.in/question/8860986

3. Find: \int \frac{dx}{x^{4}-1}.

- https://brainly.in/question/12352220

Similar questions