Math, asked by rajeshmutte, 1 month ago

slove the equation x^4+2x^3-5x^2+6x+2=0 given that 1+i is one of its roots​

Answers

Answered by mathdude500
15

\large\underline{\sf{Given - }}

 \sf \: An \:  equation :  {x}^{4}  +  {2x}^{3}  -  {5x}^{2}  + 6x + 2  = 0\: having \: one \: root \: 1 + i

\begin{gathered}\begin{gathered}\bf \: To\: find - \begin{cases} &\sf{remaining \: roots \: of \: equation}  \end{cases}\end{gathered}\end{gathered}

\large\underline{\bold{Solution-}}

Given equation is

 \sf \:  {x}^{4}  +  {2x}^{3}  -  {5x}^{2}  + 6x + 2  = 0\:having  \: one \:  root  \: 1 + i

We know, complex roots occur in conjugate pairs.

So, 1 - i is the other root of the given equation.

So,

\sf \: \:\bigg( x - (1 + i)\bigg) \bigg(x - (1 - i) \bigg)  \: is \: a \: factor \: of \:given \:  equation

 \sf \:  =  \: (x - 1 - i)(x - 1 + i)

 \sf \:  =  {(x - 1)}^{2}  -  {i}^{2}

 \sf \:  =  {x}^{2}  + 1 - 2x - ( - 1) \:  \:  \:  \:  \: ( \bf \because \:  {i}^{2}  =  - 1)

 \sf \:  =  {x}^{2}  - 2x + 2

So,

it means

 \sf \:  {x}^{2}  - 2x + 2 \: is \: a \: factor \: of \: given \: equation.

So on dividing

 \sf \:  {x}^{4}  +  {2x}^{3}  -  {5x}^{2}  + 6x + 2 \: by \:  {x}^{2}  - 2x + 2 \: we \: get \:

 \sf \:  {x}^{2}  + 4x + 1

Therefore,

 \sf \:  {x}^{4}  +  {2x}^{3}  -  {5x}^{2}  + 6x + 2 = ( {x}^{2}  - 2x + 2)( {x}^{2}  + 4x + 1)

Hence,

 \sf \:  {x}^{4}  +  {2x}^{3}  -  {5x}^{2}  + 6x + 2  = 0\:

\rm :\implies\: ({x}^{2}   - 2x + 2)( {x}^{2}  + 4x + 1) = 0

As we know that roots of the equation x² - 2x + 2 = 0 are 1 + i and 1 - i,

So, we have to find the roots of the equation

\rm :\longmapsto\: {x}^{2}  + 4x + 1 = 0

We know, the roots of quadratic is given by Quadratic formula,

So,

On comparing it with ax² + bx + c = 0, we have

  • a = 1

  • b = 4

  • c = 1

So,

Roots of the equation is given by

 \rm :\longmapsto\:\sf \: x \:  =  \: \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}

\rm :\longmapsto\:x \:  =  \: \dfrac{ - 4 \:  \pm \:  \sqrt{ {4}^{2}  - 4 \times 1 \times 1} }{2 \times 1}

\rm :\longmapsto\:x = \dfrac{ - 4 \:  \pm \:  \sqrt{12} }{2}

\rm :\longmapsto\:x = \dfrac{ - 4 \:  \pm \:  2\sqrt{3} }{2}

\rm :\longmapsto\:x \:  =  \:  - 2 \:  \pm \:  \sqrt{3}

Hence,

 \bf \: The \:  roots  \: of \: \sf \:   {x}^{4}  +  {2x}^{3}  -  {5x}^{2}  + 6x + 2  = 0\: \: are

 \bf \:  1 + i, \: 1 - i, \:  - 2 +  \sqrt{3}  \: and \:  - 2 -  \sqrt{3}

Additional Information :-

Let us consider a bi - quadratic equation

 \sf \:  {ax}^{4}  +  {bx}^{3}  +  {cx}^{2}  + dx + e = 0 \:

having roots p, q, r and s, then

 \sf \: p + q + r + s =  - \dfrac{b}{a}

 \sf \: pq + pr + ps + qr + qs + sr = \dfrac{c}{a}

  \sf \: pqr + pqs + qrs + rsp =  - \dfrac{d}{a}

 \sf \: pqrs =  \dfrac{e}{a}

Attachments:
Similar questions