Math, asked by twinkle991199, 3 months ago

slove the quadratic equation : x sq -8x+12=0​

Answers

Answered by nikithavadlamudi457
2

HOPE IT HELPS

MARK ME AS BRAINLIST

Attachments:
Answered by Anonymous
4

To solve:

  • x²-8x+12=0

_________________________

Solution:

~By middle term splitting

» x²-8x+12=0

» x²-6x-2x+12=0

» x(x-6)-2(x-6)=0

» (x-2)(x-6)=0

» x=2,6

_________________________

~By quadratic formula

• We have formula for finding roots::

\underline{\boxed{\bf x= \dfrac{-b\pm\sqrt {b^2-4ac}}{2a}}}

\sf Here \begin{cases}\sf x=roots\;of\; equation\\\sf b=coefficient\:of\:x\\\sf a=coefficient\:of\:x^2\\\sf c=constant\:term \end{cases}

• Given equation:

x²-8x+12=0

\sf Here\begin{cases}\sf Coefficient\:of\:x^2,a=1\\\sf Coefficient\:of\:x,b=-8\\\sf Constant \:term,c=12\end{cases}

Put these values in formula::

» \bf x= \dfrac{-b\pm\sqrt {b^2-4ac}}{2a}

\sf x= \dfrac{-(-8)\pm\sqrt {(-8)^2-4(1)(12)}}{2(1)}

\sf x= \dfrac{8\pm\sqrt {64-48}}{2}

\sf x= \dfrac{8\pm\sqrt {16}}{2}

\sf x= \dfrac{8\pm4}{2}

\sf x= \dfrac{8+4}{2},\dfrac{8-4}{2}

\sf x= \dfrac{12}{2},\dfrac{4}{2}

\large\underline{\boxed{\sf\star {\red{x= 6,2}}}}

Hence these are the required roots.

_________________________

Similar questions