Math, asked by jagadeeshmokka77, 11 months ago

Slove the system of equatins using Gauss-Jordan method X+Y+Z=3, 2X-Y+3Z=16
,3X+Y-Z=-3​

Answers

Answered by shabeeltve
4

Answer:

sorry

Step-by-step explanation:

x=3xyz

Answered by gayatrikumari99sl
0

Answer:

Gauss Jordan method

Step-by-step explanation:

Explanation:

Given ,

X+Y+Z=3

2X-Y+3Z=16

3X+Y-Z=-3

The augmented matrix for this given statement ,

C = [A:B]

\left[\begin{array}{ccc}1&1&1:3\\2&-1&3:16\\3&1&-1:-3\end{array}\right]

Step1:

Apply,

R_{2}R_{2} -2R_{1}

R_{3}R_{3}-3R_{1}

\left[\begin{array}{ccc}1&1&1:3\\0&-3&1:10\\0&-2&-4:-12\end{array}\right]

Step 2:

R_{2}R_{2}/-3

\left[\begin{array}{ccc}1&1&1:3\\0&1&-1/3:-10/3\\0&-2&-4:-12\end{array}\right]

on applying,

R_{3}R_{3}+2R_{2}

\left[\begin{array}{ccc}1&1&1:3\\0&1&-1/3:-10/3\\0&0&-14/3:-56/3\end{array}\right]

again apply,

R_{3}R_{3}/(-14/3)

\left[\begin{array}{ccc}1&1&1:3\\0&1&-1/3:-10/3\\0&0&1:4\end{array}\right]

Step3:

R_{2}R_{2}+1/3R_{3}

R_{1}R_{1}-R_{3}

\left[\begin{array}{ccc}1&1&0:-1\\0&1&0:-3\\0&0&1:4\end{array}\right]

Step 4:

R_{1}R_{1}-R_{2}

\left[\begin{array}{ccc}1&0&0:2\\0&1&0:-3\\0&0&1:4\end{array}\right]

Final answer :

Hence ,the value of X = 2, Y = -3 and Z= 4 is the final answer of this given question.

Similar questions