Math, asked by ishayerme321, 3 months ago

Slove this 11th Maths​

Attachments:

Answers

Answered by aryan073
2

Given :

The given equations are :

 \\  \bullet \bf \:x =   {tan}^{ - 1} (1) -  {cos}^{  - 1}  \bigg(  - \frac{1}{2} \bigg) +  {sin}^{ - 1}   \bigg( \frac{1}{2}  \bigg)

 \\  \bullet \bf \: y = cos \bigg( \frac{1}{2}  {cos}^{ - 1}  \bigg( \frac{1}{8}  \bigg) \bigg)

To Find :

• The value from this equation =?

Solution :

The given equations are :

 \\  \bullet \bf \: x =  {tan}^{ - 1} (1) -  {cos}^{ - 1}  \bigg( \frac{  - 1}{2}  \bigg) +  {sin}^{ - 1}  \bigg( \frac{1}{2}  \bigg)

 \\  \bullet \bf \: y = cos \bigg( \frac{1}{2}  {cos}^{ - 1}  \bigg( \frac{1}{8}  \bigg) \bigg)

Here,

 \\  \implies \sf \: x =  {tan}^{ - 1} (1) -  {cos}^{ - 1}  \bigg( \frac{ - 1}{2}  \bigg) +  {sin}^{ - 1}  \bigg( \frac{1}{2}  \bigg)

As we know that :

 \bullet \bf \: tan45 \degree = 1

 \\  \bullet \bf \: cos60 \degree =  \frac{1}{2}

 \\  \bullet \bf \: sin30 \degree =  \frac{1}{2}

From using values :

 \\  \implies \sf \:  {tan}^{ - 1} (1) -  {cos}^{ - 1}  \bigg( \frac{ - 1}{2}  \bigg) +  {sin}^{ - 1}  \bigg( \frac{1}{2}  \bigg)

  \\ \implies \sf \:  \frac{\pi}{4}  -  \frac{2\pi}{3}  +  \frac{\pi}{6}

 \\  \implies \sf \: x =  \frac{ - 3\pi}{12}  =  \frac{ - \pi}{4}

 \implies \boxed{ \bf{x =  \frac{ - \pi}{4} }}

Now,

 \\  \implies \sf \: y = cos \bigg( \frac{1}{2}  {cos}^{ - 1}  \bigg( \frac{1}{8}  \bigg) \bigg)

Let ,

 \\  \implies \sf \:  {cos}^{ - 1}  \bigg( \frac{1}{8}  \bigg) =  \theta

  \\ \implies \sf \: cos \theta =  \frac{1}{8}

  \\ \implies \sf \: cos \frac{ \theta}{2}  =  \sqrt{ \frac{1 + cos \theta}{2} }  =  \frac{3}{4}  = y

 \\  \implies \sf \: tanx = tan \frac{ - \pi}{4}  = 1 =  -  \frac{4}{3}  \times  \frac{3}{4}

as in option C.

Similar questions