Math, asked by sunkarishivakumar1, 11 months ago

slove this guys explanation pls​

Attachments:

Answers

Answered by Sharad001
38

Question :-

  \rm \: simplify :    \\ \to \:   {(1 + i)}^{4}  { \bigg(1 +  \frac{1}{i}  \bigg)}^{4}

Answer :-

\to \: \boxed{{(1 + i)}^{4}  { \bigg(1 +  \frac{1}{i}  \bigg)}^{4}   = 16} \:

→ Option (C) is correct .

Solution :-

We have,

 \mapsto \: {(1 + i)}^{4}  { \bigg(1 +  \frac{1}{i}  \bigg)}^{4}   \:  \\  \\  \mapsto \: {(1 + i)}^{4}  { \bigg(   \frac{i + 1}{i}  \bigg)}^{4}   \:  \\  \\  \mapsto \: {(1 + i)}^{4}  \frac{ {(1 + i)}^{4} }{ {i}^{4} }  \\  \\  \because \: i =  \sqrt{ - 1}  \\  \\ so \:  \:  \:  {i}^{2}  =  - 1 \: \:   \: and \: \:  \:   {i}^{4}  = 1 \\  \\  \mapsto \:  {(1 + i)}^{4}  \frac{ {(1 + i)}^{4} }{1}  \\  \\  \mapsto \:  {(1 + i)}^{8}  \\  \\   \rm \: we \: can \: write \: it \:  \\  \\  \mapsto \:  { \{ {(1 + i)}^{2} \} }^{4}  \\  \\  \mapsto \:   { \{  {1}^{2}  +  {i}^{2}  + 2i\}}^{4}  \:  \:  \because \:  {i}^{2}  =  - 1 \\  \\  \mapsto \:   { \{ \:  1 - 1 + 2i \}}^{4}  \\  \\  \mapsto \:  {(2i)}^{4}  \\  \\  \mapsto \:  {2}^{4}  \times  {i}^{4}  \:  \:  \:  \:  \because \:  {i}^{4}  = 1 \\  \\  \mapsto \:  {2}^{4}  = 16 \\  \\   \to \: \boxed{{(1 + i)}^{4}  { \bigg(1 +  \frac{1}{i}  \bigg)}^{4}   = 16}

Option (c) is correct .

Similar questions