Math, asked by jeeyandevadasan, 2 months ago

sn=4n²+5n.a) what is the common different.b)X1?and S25​

Attachments:

Answers

Answered by NewGeneEinstein
3

Given:-

\\ \rm\longmapsto S_n=4n^2+5n

To find:-

\\ \rm\longmapsto S_{25}

\\ \rm\longmapsto x_n

\\ \rm\longmapsto d

Solution:-

\\ \rm\longmapsto S_n=4n^2+5n

Now

\\ \rm\longmapsto S_{(n-1)}=4(n-1)^2+5(n-1)

\\ \rm\longmapsto S_{(n-1)}=4(n^2-2n+1)+5n-5

\\ \rm\longmapsto S_{(n-1)}=4n^2-8n+4+5n-5

\\ \rm\longmapsto S_{(n-1)}=4n^2-8n+5n+4-5

\\ \rm\longmapsto S_{(n-1)}=4n^2-3n-1

We know that

\boxed{\sf x_n=S_n-S_{n-1}}

\\ \rm\longmapsto x_n=4n^2+5n-(4n^2-3n-1)

\\ \rm\longmapsto x_n=4n^2+5n-4n^2+3n+1

\\ \rm\longmapsto x_n=4n^2-4n^2+5n+3n+1

\\ \rm\longmapsto x_n=8n+1

_________________________

We have now

\boxed{\sf x_n=8n+1}

\\ \rm\longmapsto x_1=8(1)+1

\\ \rm\longmapsto x_1=8+1

\\ \rm\longmapsto \underline{\boxed{\bf{x_1=9}}}

____________________________

\\ \rm\longmapsto x_2=8(2)+1

\\ \rm\longmapsto x_2=16+1

\\ \rm\longmapsto x_2=17

We know

\boxed{\sf d=x_2-x_1}

\\ \rm\longmapsto d=17-9

\\ \rm\longmapsto\underline{\boxed{\bf{d=8}}}

____________________________

  • a=9
  • d=8

We know

\boxed{\sf S_n=\dfrac{n}{2}\left\{2a+(n-1)d\right\}}

\\ \rm\longmapsto S_{25}=\dfrac{25}{2}\left\{2(9)+(25-1)8\right\}

\\ \rm\longmapsto S_{25}=\dfrac{25}{2}\left\{18+24\times 8\right\}

\\ \rm\longmapsto S_{25}=\dfrac{25}{2}\left\{18+192\right\}

\\ \rm\longmapsto S_{25}=\dfrac{25}{\cancel{2}}\times \cancel{210}

\\ \rm\longmapsto S_{25}=25\times 105

\\ \rm\longmapsto \underline{\boxed{\bf{S_{25}=2625}}}

Similar questions