Soap bubble is blown to a diameter of 7 cm. If36960 ergs of work is done in blowing it further, find the new radius, if
surface tension of the soap solution is 40 dynes/cm.
Answers
Solution
Radius of the expanded bubble is 7 cm
Given
- Initial Diameter (D) = 7 cm
- Initial Radius (R) = 7/2 cm
- Work Done (W) = 36960 Ergs
- Surface Tension (S) = 40 Dyne/cm
To finD
New Radius of the Bubble
Let r be the new radius of the bubble
Using the Relation,
Substituting the values,
Answer:
Solution
Radius of the expanded bubble is 7 cm
Given
Initial Diameter (D) = 7 cm
Initial Radius (R) = 7/2 cm
Work Done (W) = 36960 Ergs
Surface Tension (S) = 40 Dyne/cm
To finD
New Radius of the Bubble
Let r be the new radius of the bubble
Using the Relation,
\boxed{\boxed{\sf Work \ Done = Surface \ Tension \times Increase \ In \ Surface \ Area }}
Work Done=Surface Tension×Increase In Surface Area
Substituting the values,
\begin{gathered} \tt \: 36960 = 40 \times \bigg(4\pi {r}^{2} - 4\pi( { \dfrac{7}{2}) }^{2} \bigg) \times 2 \\ \\ \longrightarrow \: \tt \: 462 = 4\pi( {r}^{2} - \dfrac{49}{4} ) \\ \\ \longrightarrow \: \tt \: {r}^{2} - \dfrac{49}{4} = \dfrac{21 \times 7}{4} \\ \\ \longrightarrow \: \tt \: { r }^{2} = 49 \\ \\ \\ \longrightarrow \: \boxed{ \boxed{ \tt \: r = 7 \: cm}}\end{gathered}
36960=40×(4πr
2
−4π(
2
7
)
2
)×2
⟶462=4π(r
2
−
4
49
)
⟶r
2
−
4
49
=
4
21×7
⟶r
2
=49
⟶
r=7cm