Math, asked by mmm9582, 10 months ago

sol??????????????????​

Attachments:

Answers

Answered by Anonymous
2

Step-by-step explanation:

given \:  \\ k {x}^{2}  + 4x + 4 \\  { \alpha }^{2}  +  { \beta }^{2}  = 24 \\  now \\  \alpha  \beta  =  \frac{c}{a }   \\  =  >  \alpha  \beta  =  \frac{4}{k}  \\ \\  \alpha  +  \beta  =  -  \frac{b}{a}  \\  =  >  \alpha  +  \beta  =  -  \frac{4}{k}  \\ ( {\alpha  +  \beta})^{2}  =  \frac{16}{ {k}^{2} }  \\  =  >  {k}^{2} ( { \alpha }^{2}  +  { \beta }^{2}  +  2\alpha  \beta)  = 16 \\  =  >  {k}^{2} (24 +  \frac{8}{k} ) = 16 \\  =  > {k}^{2}  ( \frac{24k + 8}{k} ) = 16 \\  =  > 24 {k}^{2}  + 8k = 16 \\  =  > 6 {k}^{2}  + 2k - 4 = 0 \\  =  > 6 {k}^{2}  +6k - 4k  - 4 = 0 \\  =  > 6k(k + 1) - 4(k + 1) = 0 \\  =  > (k + 1)(6k - 4) = 0 \\  either \: k =  - 1 \: or \: k =  \frac{2}{3}

Similar questions