Math, asked by student8116, 1 year ago

sol it ________________5​

Attachments:

Answers

Answered by Punjabikudi4
2

Answer

Hope it will help you

Attachments:
Answered by Anonymous
8

Solution :

By using Mode Formula

 \boxed{ \tt Mode = l +  \bigg( \dfrac{f_1 - f_0}{2f_1 -f_0 - f_2 }  \bigg) \times h} \\  \\ \tt f_0 = 4 \\  \tt f_1 = 18 \\\tt f_2 = 9 \\\tt l = 4000 \\\tt h = 1000 \\ \\  \implies \tt4000 +  \bigg( \dfrac{18 -4 }{2 \times 18 - 4 - 9}  \bigg) \times 1000 \\  \\ \implies \tt4000 +  \bigg( \dfrac{14}{36 - 13} \bigg) \times 1000   \\ \\ \implies \tt4000 +   \dfrac{14000}{23} \\  \\  \implies \tt  \dfrac{92000 + 14000}{23}   \\  \\  \implies  \tt \frac{106000}{23} \\  \\  \implies  \tt4608.6 \\  \\     \large\boxed{ \tt  \green{Mode = 4608.6 }}

Similar questions