solbe it .....n......
.....
Attachments:
Answers
Answered by
1
Solution -
Given:
SinA = mSinB
m/SinA = 1/SinB
As 1/Sinθ = Cosecθ
Therefore, CosecB = m/SinA --------------1
Similarly,
TanA = nTanB
1/TanB = n/TanA
As Cotθ = 1/Tanθ
Therefore, CotB = n/TanA ---------------2
We know that,
Cosec²θ - Cot²θ = 1
Hence, Cosec²B - Cot²B = 1
Substitute the value of CosecB and CotB from equation 1 and equation 2
(m/SinA)² - (n/TanA)² = 1
m²/Sin²A - n² Cos²A/Sin²A = 1
(As Tan^2A = Sin^2A/Cos^2A)
m² - n² Cos²A = Sin²A
m² - n² Cos²A = 1 - Cos²A
(Sin²A = 1 - Cos²A)
n²Cos²A - Cos²A = m² - 1
Cos²A (n² - 1) = m² - 1
Cos²A = (m² - 1) / (n² - 1)
Hence proved.
Similar questions