Math, asked by shavinasheemar, 11 months ago

Sole the equation x²+3x-2068=0 . Find x

Answers

Answered by ItSdHrUvSiNgH
4

Step-by-step explanation:

\huge\boxed{\fcolorbox{cyan}{grey}{Solution:-}} \\  \\  \\  {x}^{2}  + 3x - 2068 = 0 \\

comparing with ax^2 + bx +c = 0

a = 1 \\ b = 3 \\ c =  - 2068 \\</em><em> </em><em>\</em><em>\</em><em> </em><em>So</em><em>,</em><em> </em><em>\</em><em>:</em><em> </em><em>by</em><em> </em><em>\</em><em>:</em><em> </em><em>using</em><em> </em><em>\</em><em>:</em><em> </em><em>Quadratic</em><em> </em><em>\</em><em>:</em><em> </em><em>formula</em><em>.</em><em>.</em><em>.</em><em>\\ x =  \frac{ - b +  \: or \:  -  \sqrt{ {b}^{2} - 4ac } }{2a}  \\ x =  \frac{ - 3 +  \: or \:  -  \sqrt{8281} }{2}  \\ x =  \frac{ - 3 +  \: or \:  - 91}{2}  \\ x = 44 \:  \:  \:  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \: x = 47

Answered by BrainlyKing5
7

Answer:

\large \underline{\boxed{\mathsf{x = 44\: or \: -47}}}

Step-by-step explanation:

Given :

\mathsf{P(x)\: = {X}^{2} + 3x - 2068 = 0}

To find :

Value of X

Solution :

Now to find the value of X we will use Quadratic formula that is :-

\boxed{\bigstar \; \mathsf{ x =  \dfrac{ - b  \: \pm \:  \sqrt{ {b}^{2} - 4ac } }{2a}}}

Where,

 \sf{a = 1 (coefficient  \: of   \: {x}^{2} )}

 \sf{b = 3 (coefficient  \: of   \: x)}

 \sf{c = -2068(Constant )}

* In order to use Quadratic formula the Discriminate (D) Of the p(X) should be greater than or equal to zero.

Here,

\mathsf{D = b^2 - 4ac}

Now putting value of a , b and c we have --

\mathsf{D = {3}^{2} - 4(1)(-2068)}

\mathsf{\implies 9 + 8272}

\mathsf{\implies D = 8281 \: &gt; \: 0}

* Thus as it's Greater than 0 we can use quadratic formula to find value of x

\mathsf{ x =  \dfrac{ - (3) \: \pm \:  \sqrt{ {3}^{2} - 4(1)(-2068) } }{2(1)}}

\mathsf{ x =  \dfrac{ -3 \: \pm \:  \sqrt{ 8281 } }{2}}

\mathsf{ x =  \dfrac{ -3 \: \pm \:  91 }{2}}

Thus Now value of

\mathsf{ x =  \dfrac{ -3 \: + \:  91 }{2}\: or \dfrac{ -3 - 91}{2}}

\implies \mathsf{ x =  \dfrac{ 88}{2}\: or \dfrac{ -94}{2}}

\implies \mathsf{ x =  44 \: or -47}

Thus Required answer is

\underline{\boxed{\mathsf{x = 44\: or \: -47}}}

Similar questions