Math, asked by sudalaikumar995, 5 months ago

solue for xe by using quadratic formula : 9x2 -9(a+b)x + (2 a2+5ab +b2)=0​

Answers

Answered by mathdude500
1

\huge \orange{AηsωeR} ✍

\tt \:  ⟼ {9x}^{2}  - 9(a + b)x + ( {2a}^{2}  + 5ab +  {2b}^{2} ) = 0

\tt \:  ⟼ \: on \: comparing \: with \: A {x}^{2}  + Bx + C = 0 \: we \: get

\begin{gathered}\begin{gathered}\bf   \begin{cases} &\sf{A \:  = 9} \\ &\sf{B =  - 9(a +b) } \\ &\sf{ {2a}^{2} + 5ab +  {2b}^{2}  } \end{cases}\end{gathered}\end{gathered}

\tt \:  Discriminant,  \:  D  =  {B}^{2}  - 4 \times A \times C

\tt \: D =   {\bigg( - 9(a + b)}\bigg)^{2} - 4 \times 9 \times ( {2a}^{2}   + 5ab +  {2b}^{2} )

\tt \:  D = 81 ({a}^{2}  + 2ab +  {b}^{2} ) - 36( {2a}^{2}  + 5ab +  {2b}^{2} )

\tt \:  D = 81 {a}^{2}  +  {81b}^{2}  + 162ab - 72 {a}^{2}  - 180ab - 72 {b}^{2}

\tt \:  D =  {9a}^{2}  - 18ab +  {9b}^{2}

\tt \:  D = 9( {a}^{2}  - 2ab +  {b}^{2} )

\tt \:  D = 9 {(a - b)}^{2}

☆ This implies D > 0 and having real and distinct roots.

☆ Solution of equation is given by

\tt \:  ⟼ \: x \:  = \dfrac{ -  \: B \:  \pm \:  \sqrt{D} }{2 \: A}

\tt \:  ⟼ \: \dfrac{9 \: (a \:  +  \: b) \:  \pm \:  \sqrt{9 \:  {(a \:  -  \: b)}^{2} } }{2 \:  \times  \: 9}

\tt \:  ⟼ \: x \:  =  \: \dfrac{9a \:  +  \: 9b \:  \pm(3a \:   -   \: 3b)}{18}

\tt \:  ⟼x = \dfrac{9a + 9b + 3a - 3b}{18}  \: or \: \dfrac{9a + 9b - 3a + 3b}{18}

\tt \:  ⟼x = \dfrac{12a + 6b}{18}  \: or \: \dfrac{6a + 12b}{18}

\tt \:  ⟼x = \dfrac{2a + b}{3}  \: or \: \dfrac{a + 2b}{3}

Similar questions