Math, asked by puneetkaur3, 7 months ago

solue the following differential equations"
dy/dx=cos^3(x).sin^4(x)+x√2x+1​

Answers

Answered by EnchantedGirl
18

Question:-

\\=> dy/dx=cos^3(x).sin^4(x)+x \sqrt{2x+1 } \\

Solution :-

Let ,

Sin x = t

cos x dx = dt

And ,

2x +1 = u => x = u-1/2

2dx = du

Now,

=> dy = (1-t^2 ) t^4 dt + \frac{1}{2} \sqrt{u} .\frac{u-1}{2} du\\\\\\=> \int dy =  \int  (t^4 -t^6 )dt + \frac{1}{4} \int (u^{3/2} - u^{1/2} )du\\\\\\=> y = \frac{t^5}{5}  - \frac{t^7}{7}  + \frac{1}{4} (\frac{2}{5} u^{5/2} - \frac{2}{5} u^{3/2} ) \\\\\\

Now, substitute  value of 't' and 'u 'in the above equation :

\\=> y = \frac{ sin^5 x }{5} - \frac{sin^7 x}{7}  + \frac{1}{10} (2x+1)^{5/2}\\\\

_____________________________

Answered by Anonymous
0

Question:-

\\=> dy/dx=cos^3(x).sin^4(x)+x \sqrt{2x+1 } \\

Solution :-

Let ,

Sin x = t

cos x dx = dt

And ,

2x +1 = u => x = u-1/2

2dx = du

Now,

=> dy = (1-t^2 ) t^4 dt + \frac{1}{2} \sqrt{u} .\frac{u-1}{2} du\\\\\\=> \int dy =  \int  (t^4 -t^6 )dt + \frac{1}{4} \int (u^{3/2} - u^{1/2} )du\\\\\\=> y = \frac{t^5}{5}  - \frac{t^7}{7}  + \frac{1}{4} (\frac{2}{5} u^{5/2} - \frac{2}{5} u^{3/2} ) \\\\\\

Now, substitute  value of 't' and 'u 'in the above equation :

\\=> y = \frac{ sin^5 x }{5} - \frac{sin^7 x}{7}  + \frac{1}{10} (2x+1)^{5/2}\\\\

_____________________________

Similar questions