Math, asked by muzahidmalik123, 1 month ago

solution for the equation:x+3/4+2y+9/3=3,2x+1/2-y+3/4=4 1/2 is

Answers

Answered by MasterDhruva
12

Solution :-

 \sf \leadsto x + \dfrac{3}{4} + 2y + \dfrac{9}{3} = 3 \: \: - - - (i)

 \sf \leadsto 2x + \dfrac{1}{2} - y + \dfrac{3}{4} = 4 \dfrac{1}{2} \: \: - - - (ii)

By first equation,

 \sf \leadsto x + \dfrac{3}{4} + 2y + \dfrac{9}{3} = 3

 \sf \leadsto x + 2y + \dfrac{9 + 36}{12} = 3

 \sf \leadsto x + 2y + \dfrac{45}{12} = 3

 \sf \leadsto x + 2y = 3 - \dfrac{45}{12}

 \sf \leadsto x + 2y = \dfrac{36 - 45}{12}

 \sf \leadsto x + 2y = \dfrac{ - 9}{12}

 \sf \leadsto x + 2y = \dfrac{ - 3}{4} \: \: - - - (iii)

Now, by second equation,

 \sf \leadsto 2x + \dfrac{1}{2} - y + \dfrac{3}{4} = 4 \dfrac{1}{2}

 \sf \leadsto 2x - y + \dfrac{3 + 2}{4} = 4 \dfrac{1}{2}

 \sf \leadsto 2x - y + \dfrac{5}{4} = \dfrac{9}{2}

 \sf \leadsto 2x - y = \dfrac{9}{2} - \dfrac{5}{4}

 \sf \leadsto 2x - y = \dfrac{18 - 5}{4}

 \sf \leadsto 2x - y = \dfrac{13}{4}  \: \: - - - (iv)

Now, by third equation,

 \sf \leadsto x + 2y = \dfrac{ - 3}{4}

 \sf \leadsto x = \dfrac{ - 3}{4} - 2y

 \sf \leadsto x = \dfrac{ - 3 - 8y}{4}

Now, by fourth equation,

 \sf \leadsto 2x - y = \dfrac{13}{4}

 \sf \leadsto 2 \bigg( \dfrac{ - 3 - 8y}{4} \bigg) - y = \dfrac{13}{4}

 \sf \leadsto \dfrac{ - 6 - 16y}{4} - y = \dfrac{13}{4}

 \sf \leadsto \dfrac{ - 6 - 16y - 4y}{4} = \dfrac{13}{4}

 \sf \leadsto \dfrac{ - 6 - 20y}{4} = \dfrac{13}{4}

 \sf \leadsto 4( - 6 - 20y) = 4(13)

 \sf \leadsto - 24 - 80y = 52

 \sf \leadsto - 80y = 52 + 24

 \sf \leadsto - 80y = 76

 \sf \leadsto y = \dfrac{76}{ - 80}

 \sf \leadsto y = \dfrac{19}{ - 20}

 \sf \leadsto y = \dfrac{ - 19}{20}

Now, by third equation,

 \sf \leadsto x + 2y = \dfrac{ - 3}{4}

 \sf \leadsto x + 2 \bigg( \dfrac{ - 19}{20} \bigg) = \dfrac{ - 3}{4}

 \sf \leadsto x + 1 \bigg( \dfrac{ - 19}{10} \bigg) = \dfrac{ - 3}{4}

 \sf \leadsto x + \dfrac{ - 19}{10} = \dfrac{ - 3}{4}

 \sf \leadsto \dfrac{10x - 19}{10} = \dfrac{ - 3}{4}

 \sf \leadsto 4(10x - 19) = 10( - 3)

 \sf \leadsto 40x - 76 =  - 30

 \sf \leadsto 40x =  - 30 + 76

 \sf \leadsto 40x = 46

 \sf \leadsto x = \dfrac{46}{40}

 \sf \leadsto x = \dfrac{23}{20}

Therefore, the values of x and y are 23/20 and -19/20 respectively.

Similar questions