Math, asked by vaishnavikishore, 1 year ago

solution for the question 2 sin 32 x cos 28

Answers

Answered by AnkitaSahni
7

Correct question is :  2 sin 32.cos 28

Given : A trigonometric equation  2 sin 32.cos 28

To Find : Value of 2 sin 32.cos 28

Solution :

We Know that ,

Sin( A+B ) = SinA.CosB +SinB.CosA _________(1)

Sin( A-B ) = SinA.CosB -SinB.CosA __________(2)

Adding (1)&(2)

Sin( A+B ) + Sin( A-B ) = 2SinA.CosB

=>  2 sin 32.cos 28 = Sin( 32 + 28 ) + Sin( 32 - 28 )

=>  2 sin 32.cos 28 = Sin( 60 ) + Sin( 4 )

=>  2 sin 32.cos 28 = \sqrt{3}/2 + Sin( 4 )

Hence, Value of 2 sin 32.cos 28 is \sqrt{3}/2 + Sin( 4 ).

Answered by Pranithapindi
0

Step-by-step explanation:

2sin32.sin28=✓3/2+sin4

Attachments:
Similar questions