solution for the question 2 sin 32 x cos 28
Answers
Answered by
7
Correct question is : 2 sin 32.cos 28
Given : A trigonometric equation 2 sin 32.cos 28
To Find : Value of 2 sin 32.cos 28
Solution :
We Know that ,
Sin( A+B ) = SinA.CosB +SinB.CosA _________(1)
Sin( A-B ) = SinA.CosB -SinB.CosA __________(2)
Adding (1)&(2)
Sin( A+B ) + Sin( A-B ) = 2SinA.CosB
=> 2 sin 32.cos 28 = Sin( 32 + 28 ) + Sin( 32 - 28 )
=> 2 sin 32.cos 28 = Sin( 60 ) + Sin( 4 )
=> 2 sin 32.cos 28 = /2 + Sin( 4 )
Hence, Value of 2 sin 32.cos 28 is /2 + Sin( 4 ).
Answered by
0
Step-by-step explanation:
2sin32.sin28=✓3/2+sin4
Attachments:
Similar questions