solution for this problem
Attachments:
Answers
Answered by
0
Answer:
(a+b+c) ² = a²+b²+c²+2(ab+bc+ac)
=>2(ab+bc+ac) = (a+b+c)² - (a²+b²+c²)
=> 2(ab+bc+ac) = (9)² - (35)
ab+bc+ac = (81-35)/2
=> ab+bc+ac = 23
Answered by
4
Step-by-step explanation:
Given -
a + b + c = 9
a² + b² + c² = 35
To Find -
Value of ab + bc + ca
Now,
As Given :-
a + b + c = 9
Squaring both sides :-
» (a + b + c)² = (9)²
» a² + b² + c² + 2ab + 2bc + 2ca = 81
As Given :-
- a² + b² + c² = 35
» 35 + 2ab + 2bc + 2ca = 81
» 2ab + 2bc + 2ca = 81 - 35
» 2(ab + bc + ca) = 46
» ab + bc + ca = 46/2
- » ab + bc + ca = 23
Hence,
The value of ab + bc + ca is 23.
Formula Used :-
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
Some related formulas :-
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- (a + b)(a - b) = a² - b²
- (a + b)³ = a³ + 3a²b + 3b²a + b³
- (a - b)³ = a³ - 3a²b + 3b²a - b³
Similar questions