solution for this question
Attachments:
Answers
Answered by
1
☺☺☺
Sol : 1 2 1
---------- + -------------- + -------------- = 0.
( 2 + √3) ( √5 - √3 ) ( 2 - √5 )
We have, 1 / ( 2 + √3 ).
To rationalize the denominator , we have to multiply the numerator and denominator by ( 2 - √3 ).
So, 1 ( 2 - √3 ) / ( 2 + √3 ) ( 2 - √3 )
= ( 2 - √3 ) / { ( 2 )² - ( √3 )² } [ ( a + b ) ( a - b ) = a² - b² ]
= ( 2 - √3 ) / ( 4 - 3 )
= ( 2 - √3 ).
For , 2 / ( √5 - √3 ) ,
To rationalize the denominator we shall multiply the numerator and denominator both by ( √5 + √3 ),
= 2 ( √5 + √3 ) / ( √5 - √3 ) ( √5 + √3 )
= 2 ( √5 + √3 ) / { ( √5 )² - ( √3 )² } [ ( a + b ) ( a - b ) = a² - b² ]
= 2 ( √5 + √3 ) / ( 5 - 3 )
= 2 ( √5 + √3 ) / 2 = ( √5 + √3 )
For, 1 / ( 2 - √5 ) ,
We shall multiply the numerator and denominator by ( 2 + √5 ) to rationalize its denominator.
= 1 ( 2 + √5 ) / ( 2 - √5 ) ( 2 + √5 )
= ( 2 + √5 ) / { ( 2 )² - ( √5 )² } [ ( a + b ) ( a - b ) = a² - b² ]
= ( 2 + √5 ) / ( 4 - 5 )
= ( 2 + √5 ) / ( - 1 )
= - ( - 2 - √5 ) / ( - 1 )
= ( - 2 - √5 )
Now, by adding all these ,
= 2 - √3 + √5 + √3 - 2 - √5
= 0 . Proved.
☺☺☺
Sol : 1 2 1
---------- + -------------- + -------------- = 0.
( 2 + √3) ( √5 - √3 ) ( 2 - √5 )
We have, 1 / ( 2 + √3 ).
To rationalize the denominator , we have to multiply the numerator and denominator by ( 2 - √3 ).
So, 1 ( 2 - √3 ) / ( 2 + √3 ) ( 2 - √3 )
= ( 2 - √3 ) / { ( 2 )² - ( √3 )² } [ ( a + b ) ( a - b ) = a² - b² ]
= ( 2 - √3 ) / ( 4 - 3 )
= ( 2 - √3 ).
For , 2 / ( √5 - √3 ) ,
To rationalize the denominator we shall multiply the numerator and denominator both by ( √5 + √3 ),
= 2 ( √5 + √3 ) / ( √5 - √3 ) ( √5 + √3 )
= 2 ( √5 + √3 ) / { ( √5 )² - ( √3 )² } [ ( a + b ) ( a - b ) = a² - b² ]
= 2 ( √5 + √3 ) / ( 5 - 3 )
= 2 ( √5 + √3 ) / 2 = ( √5 + √3 )
For, 1 / ( 2 - √5 ) ,
We shall multiply the numerator and denominator by ( 2 + √5 ) to rationalize its denominator.
= 1 ( 2 + √5 ) / ( 2 - √5 ) ( 2 + √5 )
= ( 2 + √5 ) / { ( 2 )² - ( √5 )² } [ ( a + b ) ( a - b ) = a² - b² ]
= ( 2 + √5 ) / ( 4 - 5 )
= ( 2 + √5 ) / ( - 1 )
= - ( - 2 - √5 ) / ( - 1 )
= ( - 2 - √5 )
Now, by adding all these ,
= 2 - √3 + √5 + √3 - 2 - √5
= 0 . Proved.
☺☺☺
Anonymous:
If you have still any doubt , don't hesitate to ask .
Similar questions
Math,
8 months ago
Hindi,
8 months ago
Physics,
8 months ago
Chemistry,
1 year ago
Environmental Sciences,
1 year ago