Math, asked by shekharumbratkar87, 29 days ago

solution of differential equation dy/dx=y/x+cot(y/x) is​

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \frac{dy}{dx} =  \frac{y}{x} +  \cot \bigg( \frac{y}{x}   \bigg)   \\

 \tt  \large{\red{ • \: Let \:  \:  y = vx  }} \\   \red{  \tt{\implies \:  \frac{dy}{dx} = v + x \frac{dv}{dx}}  }

So,

v + x \frac{dv}{dx} =  v +  \cot( v )   \\

 \implies \:  x \frac{dv}{dx} =  \cot( v )   \\

 \implies \:   \frac{dv}{ \cot(v) } =  \frac{dx}{x}  \\

 \implies \:    \tan(v)  \: dv =  \frac{dx}{x}  \\

Integrating both sides,

 \implies \:   \int  \tan(v)  \: dv = \int  \frac{dx}{x}  \\

 \implies \:    \sec^{2} (v)   =  \ln(x)   + C\\

 \implies \:    \sec^{2}  \bigg( \frac{y}{x} \bigg)   =  \ln(x)   + C\\

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

The given Differential equation is

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{y}{x}  + cot\dfrac{y}{x}

This is homogeneous differential equation, So solve such differential equation, we substitute,

 \boxed{ \bf{ \:y \:  =  \: vx  \: }} -  -  -  - (1)

On substituting this value in above differential equation, we get

\rm :\longmapsto\:\dfrac{d}{dx} vx= \dfrac{vx}{x}  + cot\dfrac{vx}{x}

\rm :\longmapsto\:v\dfrac{d}{dx}x + x\dfrac{d}{dx}v = v + cotv

\rm :\longmapsto\:v + x\dfrac{dv}{dx} = v + cotv

\rm :\longmapsto\:x\dfrac{dv}{dx} = cotv

On separating the variables, we get

\rm :\longmapsto\:\dfrac{dv}{cotv} = x \: dx

\rm :\longmapsto\:tanv \: dv = x \: dx

On integrating both sides, we get

\rm :\longmapsto\:\displaystyle\int tanv \: dv =\displaystyle\int  x \: dx

\rm :\longmapsto\:log |secv| = \dfrac{ {x}^{2} }{2} + c

On substituting the value of v, we get

\rm :\longmapsto\:log  \bigg|sec \dfrac{y}{x}  \bigg| = \dfrac{ {x}^{2} }{2} + c

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cox & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions