solution of - ln(a-x) =kt-lna
Answers
Answered by
2
Answer :
Given,
- ln (a - x) = kt - ln (a)
⇒ ln (a) - ln (a - x) = kt
⇒ ln { a/(a - x) } = kt
⇒ 2.303 log { a/(a - x) },
since ln (x) = 2.303 log (x)
⇒ log { a/(a - x) } = kt/2.303
⇒ a/(a - x) = e^(kt/2.303)
⇒ a - x = a/{ e^(kt/2.303) }
⇒ x = a - a/{ e^(kt/2.303) }
Hence, the required solution be
x = a - a/{ e^(kt/2.303) }
#MarkAsBrainliest
Given,
- ln (a - x) = kt - ln (a)
⇒ ln (a) - ln (a - x) = kt
⇒ ln { a/(a - x) } = kt
⇒ 2.303 log { a/(a - x) },
since ln (x) = 2.303 log (x)
⇒ log { a/(a - x) } = kt/2.303
⇒ a/(a - x) = e^(kt/2.303)
⇒ a - x = a/{ e^(kt/2.303) }
⇒ x = a - a/{ e^(kt/2.303) }
Hence, the required solution be
x = a - a/{ e^(kt/2.303) }
#MarkAsBrainliest
sushreesangitasamal:
thanks
Similar questions