Solution of the differential equation dy/dx=siny+x/sin2y-xcosy is
Answers
Answered by
7
Answer:
the solution to the problem is solved below :-
Step-by-step explanation:
dy/dx=sin y+x/sin 2y-x cos y
dy/dx=sin y+x/2 sin y.cos y-x cos y
cos y dy/dx=sin y+x/2(sin y)-x
cos y dy/dx=(sin y/x)+1/2(sin y/x)-1
put sin y/x=t
sin y=tx
cos y dy/dx=x dt/dx +t
x dt/dx+t=t+1/2t-1
x dt/dx =t+1/2t-1 -t=t+1-2t^2+t/2t-1=2*t-2t^2+1/2t-1
-2t^2+2t+1=v
-1/2 ln | -2t^2-2t+1 | = ln |x|+c
-1/2 ln | -2(sin y/x)^2+2 sin y/2 +1 |=ln | x |+c
ln | x^2[-2sin ^2 y/x^2 + 2sin y/x +1] | = c1
Similar questions
Math,
7 months ago
Math,
7 months ago
Computer Science,
1 year ago
English,
1 year ago
English,
1 year ago