solution of the equation 5^2x-5^x+3+125=5^x is
Answers
Answered by
13
solution of the equation 5^2x-5^x+3+125=5^x is
5^2x-5^(x+3)+125=5^x
let suppose,
5^x=b
5^2x=b^2
b^2-125b+125=b
b^2-126b+125=0
b=125,1
so that, 5^(x)=125 = 5^(3 )or 5^(x)=1 = 5^0
so here it is x=3 / x=0
elvishthakur29:
ok mam aap ko tho topper hona chahiye
Answered by
5
Answer:
Step-by-step explanation:
5^(2x) - 5^(x + 3) + 125 = 5^(x)
5^(2x) - 5^3 * 5^(x) + 125 = 5^x
5^(2x) - 125 * 5^(x) - 5^(x) + 125 = 0
5^(2x) - 126 * 5^(x) + 125 = 0
5^(x) = (126 +/- sqrt(126^2 - 4 * 1 * 125)) / (2 * 1)
5^(x) = (126 +/- sqrt(15876 - 500)) / 2
5^(x) = (126 +/- 124) / 2
5^(x) = 250/2 , 2/2
5^(x) = 125 , 1
x * ln(5) = ln(125) , ln(1)
x * ln(5) = ln(5^3) , 0
x * ln(5) = 3 * ln(5) , 0
x = 3 * ln(5) / ln(5) , 0 / ln(5)
x = 3 , 0
Hope it helps!
Similar questions