Math, asked by itslyricsworld, 4 months ago

Solution of the quadratic ײ+×+1=0 is

Answers

Answered by anindyaadhikari13
11

Required Answer:-

Given:

  • x² + x + 1 = 0

To find:

  • The values of x.

Solution:

Given that,

 \rm  {x}^{2}  + x + 1 = 0

Here,

 \rm \implies a = 1

 \rm \implies b= 1

 \rm \implies c= 1

Where,

a = coefficient of x²

b = coefficient of x.

c = coefficient of x^0

So,

 \rm x _{1,2} =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac} }{2a}

 \rm \implies x =  \dfrac{ - 1 \pm \sqrt{ {(1)}^{2} - 4 \times 1 \times 1} }{2}

 \rm \implies x =  \dfrac{ - 1 \pm \sqrt{1 -  4} }{2}

 \rm \implies x =  \dfrac{ - 1 \pm \sqrt{ - 3} }{2}

 \rm \implies x =  \dfrac{ - 1 \pm i\sqrt{3} }{2}

So,

 \rm \implies x_{1} =  \dfrac{ - 1 + i\sqrt{3} }{2}

And,

 \rm \implies x_{2} =  \dfrac{ - 1 -  i\sqrt{3} }{2}

Hence, the roots of the quadratic equation are (-1 + i√3)/2 and (-1 - i√3)/2

Note:

  • i = √-1

Quadratic Formula:

 \rm x _{1,2} =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac} }{2a}

where, Discriminant = b² - 4ac.

Answered by BrainlyKingdom
3

\sf{x^2+x+1=0}

\implies\sf{\displaystyle x_{1,\:2}=\frac{-1\pm \sqrt{1^2-4\cdot \:1\cdot \:1}}{2\cdot \:1}}

\implies\sf{\displaystyle x_{1,\:2}=\frac{-1\pm \sqrt{3}i}{2\cdot \:1}}

\implies\sf{\displaystyle x_1=\frac{-1+\sqrt{3}i}{2\cdot \:1},\:x_2=\frac{-1-\sqrt{3}i}{2\cdot \:1}}

\boxed{\implies\sf{\displaystyle x=-\frac{1}{2}+i\frac{\sqrt{3}}{2},\:x=-\frac{1}{2}-i\frac{\sqrt{3}}{2}}}

Similar questions