Math, asked by Uniquedosti00017, 11 months ago

solution of this question, step by step​

Attachments:

Answers

Answered by abhi569
13

Answer:

\implies (n-2)+\dfrac{1}{n-2}

Step-by-step explanation:

Given,

First term = a_{1} = 0

Let the common difference between the consecutive terms of this AP be d.

Therefore, using the properties of AP,

Second term = a_{1} + d = 0 + d = d

Similarly,

Third term = 2d , fourth term = 3d and so on, thus, nth term = ( n - 1 )d & ( n - 1 )th term = ( n - 2 )d.

 \implies  \bigg( \dfrac{ a _{3} }{ a _{2}} +  \dfrac{a _{4}}{ a _{3}} + ... +  \dfrac{a _{n}}{a _{n - 1}}  \bigg) - a _{2} \bigg( \dfrac{1}{a _{2}} +  \dfrac{1}{a _{3}} + ... +  \dfrac{1}{ a _{n - 2}} \bigg)  \\  \\  \\  \implies \bigg\{\dfrac{ 2d }{d} +  \dfrac{3d}{2d}  + ... +  \dfrac{(n - 1)d}{(n - 2)d} \bigg\}  -  d \bigg\{\dfrac{1}{d}  +   \dfrac{1}{2d}  + ... +  \dfrac{1}{(n - 3)d}  \bigg \} \\  \\  \\  \implies \bigg \{2 +  \dfrac{3}{2}  +  \dfrac{4}{3} +   ... +  \dfrac{n - 1}{n - 2}  \bigg \} -  \bigg \{ \dfrac{1}{1}  +  \dfrac{1}{2}  +  \dfrac{1}{3}  + ... +  \dfrac{1}{n - 3} \bigg \} \\  \\  \\  \implies \bigg \{(1 + 1) +  \dfrac{2 + 1}{2} +  \dfrac{3 + 1}{3} +   ... +  \dfrac{n - 2 + 1}{n - 2}  \bigg \} -  \bigg \{ \dfrac{1}{1}  +  \dfrac{1}{2}  +  \dfrac{1}{3}  + ... +  \dfrac{1}{n - 3} \bigg \} \\  \\  \\ \implies \bigg \{(1 + 1) +  \overline{1 +  \dfrac{1}{2}} + \overline{1 +  \dfrac{1}{3}} +   ... +  \overline{1 + \dfrac{1}{n - 2} } \bigg \} -  \bigg \{ \dfrac{1}{1}  +  \dfrac{1}{2}  +  \dfrac{1}{3}  + ...  \dfrac{1}{n - 3} \bigg \} \\  \\  \\  \implies (1 + 1 + ... \:  \bold{upto \: (n - 2)\: terms})  \:  +  \bigg \{ \dfrac{1}{1}  +  \dfrac{1}{2}  +  \dfrac{1}{3}  + ...  \dfrac{1}{n - 3}  \bigg \} + \dfrac{1}{n-2}- \bigg \{ \dfrac{1}{1}  +  \dfrac{1}{2}  +  \dfrac{1}{3}  + ...  \dfrac{1}{n - 3} \bigg \}  \\  \\  \\  \implies  \dfrac{n - 2}{2} \bigg \{1+1\bigg \}  +  \dfrac{1}{n - 2}  \\  \\  \\  \implies \dfrac{(n - 2)2}{2} +\dfrac{1}{n - 2}

\implies (n-2)+\dfrac{1}{n-2}

Answered by devoleena87
23

Hi

hope it helps you......

Attachments:
Similar questions