solution of x^2p+y^2q=z^2
Answers
TO DETERMINE
The solution of
EVALUATION
The given equation is
Here the subsidiary equations are
From first two of (1)
On integration
Again from last two of (1)
On integration
Where a and b are constants
From Equation (2) & Equation (3) we get the required solution as
RESULT
The required solution is
━━━━━━━━━━━━━━━━
LEARN MORE FROM BRAINLY
Solve the differential equation
(cosx.cosy - cotx) dx - (sinx.siny) dy=0
https://brainly.in/question/23945760
Step-by-step explanation:
\displaystyle\huge\red{\underline{\underline{Solution}}}
Solution
TO DETERMINE
The solution of
\sf{ {x}^{2}p + {y}^{2} q = {z}^{2} \: \: }x
2
p+y
2
q=z
2
EVALUATION
The given equation is
\sf{ {x}^{2}p + {y}^{2} q = {z}^{2} \: \: }x
2
p+y
2
q=z
2
Here the subsidiary equations are
\displaystyle \sf{ \frac{dx}{ {x}^{2} } = \frac{dy}{ {y}^{2} } = \frac{dz}{ {z}^{2} }\: } \: \: \: \: \: .....(1)
x
2
dx
=
y
2
dy
=
z
2
dz
.....(1)
From first two of (1)
\displaystyle \sf{ \frac{dx}{ {x}^{2} } = \frac{dy}{ {y}^{2} } }
x
2
dx
=
y
2
dy
On integration
\displaystyle \sf{ - \frac{1}{x} = - \frac{1}{y} + a }−
x
1
=−
y
1
+a
\implies \displaystyle \sf{ \frac{1}{y} - \frac{1}{x} = a } \: \: \: ....(2)⟹
y
1
−
x
1
=a....(2)
Again from last two of (1)
\displaystyle \sf{ \frac{dy}{ {y}^{2} } = \frac{dz}{ {z}^{2} }\: } \: \: \: \: \:
y
2
dy
=
z
2
dz
On integration
\displaystyle \sf{ - \frac{1}{y} = - \frac{1}{z} + b}−
y
1
=−
z
1
+b
\implies\displaystyle \sf{ \frac{1}{z} - \frac{1}{y} = b} \: \: \: .....(3)⟹
z
1
−
y
1
=b.....(3)
Where a and b are constants
From Equation (2) & Equation (3) we get the required solution as
\displaystyle \sf{ \frac{1}{y} - \frac{1}{x} = f \bigg( \frac{1}{z} - \frac{1}{x} \bigg)\: }
y
1
−
x
1
=f(
z
1
−
x
1
)
RESULT
The required solution is
\boxed{ \displaystyle \sf{ \: \: \: \: \frac{1}{y} - \frac{1}{x} = f \bigg( \frac{1}{z} - \frac{1}{x} \bigg)\: } \: \: \: \: }
y
1
−
x
1
=f(
z
1
−
x
1
)
━━━━━━━━━━━━━━━━
LEARN MORE FROM BRAINLY
Solve the differential equation
(cosx.cosy - cotx) dx - (sinx.siny) dy=0
https://brainly.in/question/23945760