Physics, asked by Dipanjal466, 6 months ago

solution pls
................

Attachments:

Answers

Answered by Anonymous
8

\frak{Given} \begin{cases} \sf{Mass\ =\ 10\ kg} \\ \\ \sf{Velocity\ =\ 10 \sqrt{x}} \end{cases}

 \\

\underline{ \mathfrak{ \: To\:Find:- \: }} \\ \\

\sf Work \:down(W)

 \\

\underline{ \mathfrak{ \: Solution  :- \: }} \\ \\

 \\

\sf At \:first\:we\:need\:to\:find\:acceleration

\sf Here \:Given:-

 \\

\sf v = 10√x

_______________________________________________

 \dashrightarrow \bf{a\ =\ \dfrac{dv}{dt}} \\ \\  \dashrightarrow \tt{a\ =\ \dfrac{dv}{dt}\ \times\ \dfrac{dx}{dx}} \\ \\  \dashrightarrow  \tt{a\ =\ \dfrac{dx}{dt}\ \times\ \dfrac{dv}{dx}} \\ \\  \dashrightarrow \tt{a\ =\ v \dfrac{dv}{dx}}  \\ \\ \dashrightarrow \tt{a\ =\ 10 \sqrt{x} \dfrac{d(10 \sqrt{x})}{dx}} \\ \\  \dashrightarrow \tt{a\ =\ 10 \sqrt{x} \dfrac{10}{2 \sqrt{x}}} \\ \\  \dashrightarrow \tt{a\ =\ 10 \cancel{\sqrt{x}} \dfrac{5}{\cancel{\sqrt{x}}}} \\ \\  \dashrightarrow \tt{a\ =\ \dfrac{50}{1}} \\ \\

\dashrightarrow {\boxed{\frak{\purple{a= 50\;ms^{-2}}}}}\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\sf Again

\dashrightarrow \bf{W\ =\ F.dx} \\ \\ \\ \dashrightarrow \tt{W\ =\ ma.dx} \\ \\ \\ \dashrightarrow \tt{W\ =\ 10\ \times\ 50\ .dx} \\ \\ \\ \dashrightarrow  \tt{W\ =\ 10(50.dx)}

\displaystyle  \dashrightarrow \tt{\int W\ =\ 10 (\int_4 ^9 50.dx)} \\ \\\dashrightarrow  \tt{W\ =\ 10( \big[ 50x \big] ^9 _4)} \\ \\  \dashrightarrow \tt{W\ =\ 10(50 [9\ -\ 4]) } \\ \\  \dashrightarrow \tt{W\ =\ 10( 50[5])} \\ \\

\dashrightarrow {\boxed{\frak{\purple{W= 2500\;J}}}}\\ \\

 \\

\;\;\underline{\textbf{\textsf{Hence -}}}

 \\

\underline{\textsf{   Work down </p><p>\textbf{ 2500J}}}.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions