Math, asked by krishnajaindal, 5 hours ago

solution pls
vydvzye​

Attachments:

Answers

Answered by mathdude500
6

Given Question

Factorize the following

\rm :\longmapsto\: {a}^{2}(b - c) +  {b}^{2}(c - a) +  {c}^{2}(a - b)

 \green{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\: {a}^{2}(b - c) +  {b}^{2}(c - a) +  {c}^{2}(a - b)

\rm \:  =  \:  {a}^{2}(b - c) +  {cb}^{2} -  {ab}^{2} +  {ac}^{2} -  {bc}^{2}

can be re-arranged as

\rm \:  =  \:  {a}^{2}(b - c) +  {cb}^{2} -  {bc}^{2} +  {ac}^{2} -  {ab}^{2}

\rm \:  =  \:  {a}^{2}(b - c) +  cb(b - c) + a( {c}^{2} -  {b}^{2} )

\rm \:  =  \:  {a}^{2}(b - c) +  cb(b - c)  -  a( {b}^{2} - {c}^{2} )

\rm \:  =  \:  {a}^{2}(b - c) +  cb(b - c)  -  a(b - c)(b + c)

\rm \:  =  \:  (b - c)\bigg[{a}^{2} +  cb -  a(b + c)\bigg]

\rm \:  =  \:  (b - c)\bigg[{a}^{2} +  cb -  ab - a c\bigg]

\rm \:  =  \:  (b - c)\bigg[{a}^{2} - ab + bc - a c\bigg]

\rm \:  =  \:  (b - c)\bigg[ a(a - b)  - c(a - b)\bigg]

\rm \:  =  \:  (b - c)\bigg[ (a - b)(a - c)\bigg]

\rm \:  =  \:  (b - c) (a - b)(a - c)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More Identities to know

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions