Math, asked by Anonymous, 4 months ago

solution plz dont spam​

Attachments:

Answers

Answered by zainab3456
0

Answer:

6.% annual

Step-by-step explanation:

no step by step explaination

Answered by varadad25
4

Question:

If Rs. 1000 becomes Rs. 1102.50 in 2 years, what is the compound interest rate?

Answer:

The rate of compound interest is 5 % annual.

Step-by-step-explanation:

We have given that for compound interest,

  • Principle ( P ) = Rs. 1000
  • Amount ( A ) = Rs. 1102.50
  • Time period ( N ) = 2 years

We have to find the rate of interest.

Now, we know that,

\displaystyle{\pink{\sf\:A\:=\:P\:\left(\:1\:+\:\dfrac{R}{100}\:\right)^N}\sf\:\quad\:-\:-\:[\:Formula\:]}

\displaystyle{\implies\sf\:\dfrac{A}{P}\:=\:\left(\:1\:+\:\dfrac{R}{100}\:\right)^N}

\displaystyle{\implies\sf\:\dfrac{A}{P}\:=\:\left(\:\dfrac{100\:+\:R}{100}\:\right)^2}

\displaystyle{\implies\sf\:\sqrt{\dfrac{A}{P}}\:=\:\dfrac{100\:+\:R}{100}\:\quad\:-\:-\:-\:[\:Taking\:square\:roots\:]}

\displaystyle{\implies\sf\:\sqrt{\dfrac{A}{P}}\:\times\:100\:=\:100\:+\:R}

\displaystyle{\implies\sf\:R\:=\:\sqrt{\dfrac{A}{P}}\:\times\:100\:-\:100}

\displaystyle{\implies\sf\:R\:=\:\sqrt{\dfrac{A}{P}}\:\times\:\sqrt{10000}\:-\:100}

\displaystyle{\implies\sf\:R\:=\:\sqrt{\dfrac{A\:\times\:10000}{P}}\:-\:100}

\displaystyle{\implies\sf\:R\:=\:\sqrt{\dfrac{1102.50\:\times\:10\cancel{000}}{1\cancel{000}}}\:-\:100}

\displaystyle{\implies\sf\:R\:=\:\sqrt{1102.50\:\times\:10}\:-\:100}

\displaystyle{\implies\sf\:R\:=\:\sqrt{11025}\:-\:100}

\displaystyle{\implies\sf\:R\:=\:\sqrt{105\:\times\:105}\:-\:100}

\displaystyle{\implies\sf\:R\:=\:105\:-\:100}

\displaystyle{\implies\underline{\boxed{\red{\sf\:R\:=\:5\:\%}}}}

∴ The rate of compound interest is 5 % annual.

Similar questions