Math, asked by rashmi1214, 1 year ago

solution plzz...

(5^625)/7
[find Remainder]

Answers

Answered by shadowsabers03
8

\large \textbf{\underline{\underline{Fermat's Theorem}}}\\ \\ \begin{flushleft}\normalsize \textsf{If \ $a$ \ is any positive integer and \ $p$ \ is any prime number such that \ $(a,\ p)=1,$ \ then,}\end{flushleft} \\ \\ \begin{center}\Large \text{$a^{p-1}\equiv 1\pmod{p}$}\end{center}

Since  (5,\ 7)=1,

\begin{aligned}&5^6\equiv1\pmod{7}\end{aligned}

Now let's divide 625 by 6.

625 divided by 6 gives quotient 104 and remainder 1.

Hence,

\begin{aligned}&5^6\equiv1\pmod{7}\\ \\ \Longrightarrow\ \ &\left(5^6\right)^{104}\equiv 1^{104}\pmod{7}\\ \\ \Longrightarrow\ \ &5^{624}\equiv 1\pmod{7}\\ \\ \Longrightarrow\ \ &5^{624}\times 5\equiv 1\times 5\pmod{7}\\ \\ \Longrightarrow\ \ &5^{625}\equiv \textbf{5}\pmod{7}\end{aligned}

Thus, the remainder is 5.

Similar questions