Math, asked by sia2451, 10 months ago

solution plzzz only q4

Attachments:

Answers

Answered by amitkumar44481
3

 \bold \red  \star \:  \large\underline{Given:-}

Quadratic  \: Equation:- \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  2 {x}^{2}  - 4x + 3 = 0. \\

Comparing \:  with \:  \red {general }\:   \: equation

 \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold { a {x}^{2}  + bx + c = 0. }\\  \\  \: where \: as  , \\  \:  \:  \\ \:  \:  \:  \:     \dot \:  \: \bold {a = 2}  \: \:  \:  \:  \:  \bold {b =  - 4 }\:  \:  \:  \: and \:  \:  \:  \: \bold{c = 3. }\\

__________________________________

 \\ Now,  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Discriminant  =   \bold{{ {b}^{2}  - 4ac.}} \\  \\

 \bold D= {b}^{2}  - 4ac. \\  \\ \:  \:  \:  \:  \:   =  {(- 4) }^{2}  - 4(2)(3) . \\  \\  \:  \:  \:  \:  \:   = 16 - 24. \\  \\  \:  \:  \:  \:   \: =  - 8. \\  \\

Here we can see,

 \bold{D < 0.}

The nature of roots become negative or

we can say,

 \bold{ Nature \:  of  \: Roots} \longrightarrow\\  \\   \:  \:  \:  \:  \:  \:  \:  \bold { ( Roots  \: are  \: not  \: real. )}

Attachments:
Similar questions