Math, asked by sharmasiddhi255, 4 months ago

Solution
Rati
2. The length of a rectangular swimming
pool is 5 m more than two times its
breadth. Find the length and breadth
of the pool if its perimeter is 160 m.

Answers

Answered by DüllStâr
144

Given:-

 \\

  • Perimeter of pool = 160 m

 \\

  • length of a rectangular swimming pool is 5 m more than two times its breadth

To find:-

 \\

  • Length of swimming pool

 \\

  • Breadth of swimming pool

 \\

Let:-

 \\

  • Breadth of swimming pool be x

 \\

  • Length of swimming pool be 5 + 2x

 \\

Solution:-

 \\

We know:

 \\

 \bigstar \boxed{ \rm{}Perimeter \: of \: rectangle = 2(length + breadth)}

 \\

By using this formula we can find value of Perimeter of rectangle

 \\

 \dashrightarrow \: \sf{}Perimeter \: of \: rectangle = 2(length + breadth) \\  \\

 \\

 \dashrightarrow \: \sf{}160= 2( \{5 + 2x \} +  \{x \}) \\  \\

 \\

 \dashrightarrow \: \sf{}160= 2\{5 + 2x \} + 2 \{x \} \\  \\

 \\

 \dashrightarrow \: \sf{}160= 2\{5 + 2x \} + 2 x \\  \\

 \\

 \dashrightarrow \: \sf{}160=  \{2 \times 5 + 2 \times 2  \}+ 2 x \\  \\

 \\

 \dashrightarrow \: \sf{}160=  \{10 + 4x \}+ 2 x \\  \\

 \\

 \dashrightarrow \: \sf{}160= 10 + 4x + 2 x \\  \\

 \\

 \dashrightarrow \: \sf{}160= 10 +6x \\  \\

 \\

 \dashrightarrow \: \sf{}10 +6x = 160 \\  \\

 \\

 \dashrightarrow \: \sf{}6x = 160 - 10 \\  \\

 \\

 \dashrightarrow \: \sf{}6x = 150 \\  \\

 \\

 \dashrightarrow \: \sf{}x = \frac{150}{6}  \\  \\

 \\

 \dashrightarrow \: \sf{}x = \frac{25 \times 6}{6}  \\  \\

 \\

 \dashrightarrow \: \sf{}x = \frac{25 \times  \cancel6}{ \cancel6}  \\  \\

 \\

 \dashrightarrow \: \sf{}x = 25 \times  1 \\  \\

 \\

 \dashrightarrow \: \sf{}x = \textsf{ \textbf{25 }} \\  \\

 \\

Now Let's Verify value of x:-

 \\

 \dashrightarrow \: \sf{}160= 2( \{5 + 2 \times 25 \} +  \{25\}) \\  \\

 \\

 \dashrightarrow \: \sf{}160= 2( \{5 + 2 \times 25 \} +25) \\  \\

 \\

 \dashrightarrow \: \sf{}160= 2( \{5 +50 \} +25) \\  \\

 \\

 \dashrightarrow \: \sf{}160= 2( \{55\} +25) \\  \\

 \\

 \dashrightarrow \: \sf{}160= 2( 55 +25) \\  \\

 \\

 \dashrightarrow \: \sf{}160= 2(80) \\  \\

 \\

 \dashrightarrow \: \textsf{ \textbf{160= 160}}\\  \\

 \\

LHS = RHS

 \\

Hence verified!

 \\

Finally:-

 \\

To find breadth of swimming pool:-

 \\

 \textsf{Breadth of swimming pool = x}

 \\

 \leadsto \textsf{Breadth of swimming pool = \textbf{ 25 m}} \\

 \\

To find Length of swimming pool:-

 \\

 \textsf{Length of swimming pool = 5 + 2x}

 \\

  \leadsto\textsf{Length of swimming pool = 5 + 2 $\times$ 25} \\

 \\

  \leadsto\textsf{Length of swimming pool = 5 +50} \\

 \\

  \leadsto\textsf{Length of swimming pool = \textbf{55 \: m}} \\

Answered by thebrainlykapil
72

Given :-

  • The length of a rectangular swimming pool is 5 m more than two times its breadth
  • Perimeter of Pool = 160m

 \\

To Find :-

  • Length and Breadth of Pool

 \\

Solution :-

⟾ Let the Breadth of Pool be x

⟾ Then Length of Pool will be 5 + 2x

According to the Question :

➞ Perimeter of Rectangle = 2 ( L + B )

➞ 160 = 2 ( 5 + 2x + x )

➞ 160 / 2 = 5 + 2x + x

➞ 80 = 5 + 3x

➞ 80 - 5 = 3x

➞ 75 = 3x

➞ 75 / 3 = x

➞ 25 = x

________________

Verification :

➞ Perimeter of Pool = 2 ( L + B )

➞ Perimeter of Pool = 2 ( 5 + 2x + x )

➞ Perimeter of Pool = 2 ( 5 + 3x )

➞ Perimeter of Pool = 2 ( 5 + 3 × 25)

➞ Perimeter of Pool = 2 ( 5 + 75 )

➞ Perimeter of Pool = 2 × 80

➞ 160 = 160

Hence Verified

________________

Therefore :

  • Length = 5 + 2x = 5 + 2 × 25 = 5 + 50 = 55m
  • Breadth = x = 25m

________________

Additional Info :

Formulas Related to Rectangle:

  • Perimeter of Rectangle = 2( l + b)
  • Area = Length × Breadth
  • Length = Area / Breadth
  • Breadth = Area / Length
  • Diagonal = √(l)² + (b)²

________________

Similar questions