Math, asked by student198, 3 months ago

solution set of 3|x-1| +x² -7>0.
no irrelevant answer!!​

Answers

Answered by khushbusingla087
0

Answer:

X>2

Step-by-step explanation:

3(x-1)+ x2-7

=3x-3+x2-7

=x2+3x-10

=x2+5x-2x-10

=x(x+5)-2(x+5)

=(x-2)(x+5)

X>2

Answered by shadowsabers03
5

We need to find the solution set of the inequality,

\longrightarrow 3|x-1|+x^2-7>0

Case 1:- Let,

  • x-1\geq0
  • x\in[1,\ \infty)\quad\quad\dots(1.1)

such that |x-1|=x-1.

Then,

\longrightarrow 3(x-1)+x^2-7>0

\longrightarrow 3x-3+x^2-7>0

\longrightarrow x^2+3x-10>0

\longrightarrow x^2+5x-2x-10>0

\longrightarrow x(x+5)-2(x+5)>0

\longrightarrow(x-2)(x+5)>0

\Longrightarrow x\in(-\infty,\ -5)\cup(2,\ \infty)\quad\quad\dots(1.2)

Taking (1.1)\land(1.2),

\longrightarrow x\in[1,\ \infty)\cap\left[(-\infty,\ -5)\cup(2,\ \infty)\right]

\longrightarrow x\in(2,\ \infty)\quad\quad\dots(1)

Case 2:- Let,

  • x-1\leq0
  • x\in(-\infty,\ 1]\quad\quad\dots(2.1)

such that |x-1|=1-x.

Then,

\longrightarrow 3(1-x)+x^2-7>0

\longrightarrow 3-3x+x^2-7>0

\longrightarrow x^2-3x-4>0

\longrightarrow x^2-4x+x-4>0

\longrightarrow x(x-4)+x-4>0

\longrightarrow(x+1)(x-4)>0

\Longrightarrow x\in(-\infty,\ -1)\cup(4,\ \infty)\quad\quad\dots(2.2)

Taking (2.1)\land(2.2),

\longrightarrow x\in(-\infty,\ 1]\cap\left[(-\infty,\ -1)\cup(4,\ \infty)\right]

\longrightarrow x\in(-\infty,\ -1)\quad\qua\dots(2)

Finally (1)\lor(2) gives the solution set of our inequality.

\longrightarrow\underline{\underline{x\in(-\infty,\ -1)\cup(2,\ \infty)}}


amansharma264: Great
Similar questions