Math, asked by taran1659, 8 months ago

solution set of the inequation x²/x-2>0 is: ​

Answers

Answered by shadowsabers03
13

We're asked to find solution set of the inequality,

\displaystyle\sf{\longrightarrow \dfrac {x^2}{x-2}>0}

We know the denominator should be non - zero.

\displaystyle\sf{\longrightarrow x-2\neq0}

\displaystyle\sf{\longrightarrow x\neq2}

\displaystyle\sf{\longrightarrow x\in\mathbb{R}-\{2\}\quad\quad\dots(1)}

The numerator \displaystyle\sf {x^2} is always non - negative \displaystyle\sf {\forall x\in\mathbb{R}.}

But since the fraction is only greater than 0,

\displaystyle\sf{\longrightarrow x^2>0}

\displaystyle\sf{\Longrightarrow x\in\mathbb{R}-\{0\}\quad\quad\dots(2)}

For a fraction being positive, both the numerator and denominator should have same sign.

Hence denominator is also positive here.

\displaystyle\sf{\longrightarrow x-2>0}

\displaystyle\sf{\longrightarrow x>2}

\displaystyle\sf{\Longrightarrow x\in(2,\ \infty)\quad\quad\dots(3)}

Now we take (1), (2) and (3) in common.

Then we get,

\displaystyle\sf{\longrightarrow\underline {\underline {x\in(2,\ \infty)}}}

So this is the solution.

Similar questions