Math, asked by droy48645, 3 days ago

solv for x, y ; 3/(x+y)+4/(x-y)=5 and 5/(x+y)+1/3(x-y)=2​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given pair of equations are

\rm \: \dfrac{3}{x + y}  + \dfrac{4}{x - y}  = 5 \\

and

\rm \: \dfrac{4}{x + y}  + \dfrac{1}{3(x - y)}  = 2 \\

Let assume that,

\rm \: \dfrac{1}{x + y}  = u -  -  - (1) \\

and

\rm \: \dfrac{1}{x  -  y}  = v -  -  - (2) \\

So, given equations can be rewritten as

\rm \:  \: 3u + 4v = 5 -  -  - (3) \\

and

\rm \:  \: 5u + \dfrac{v}{3}  = 2 \\

\rm \:  \: \dfrac{15u + v}{3}  = 2 \\

\rm \: 15u + v = 6 -  -  - (4) \\

So, on multiply equation (4) by 4, we get

\rm \: 60u + 4v = 24-  -  - (5) \\

On Subtracting equation (3) from equation (5), we get

\rm \: 57u = 19 \\

\rm\implies \:u \:  =  \: \dfrac{1}{3}

On substituting the value of u from equation (1), we get

\rm\implies \:\dfrac{1}{x + y} \:  =  \: \dfrac{1}{3}

\rm\implies \:x + y = 3 -  -  - (6) \\

On substituting the value of u in equation (3), we get

\rm \: 1 + 4v = 5 \\

\rm \:  4v = 5 - 1 \\

\rm \:  4v = 4 \\

\rm\implies \:v = 1 \\

On substituting the value of v, from equation (2), we get

\rm\implies \:\dfrac{1}{x - y}  = 1 \\

\rm\implies \:x - y = 1 -  -  - (7) \\

On adding equation (6) and (7), we get

\rm \: 2x = 4 \\

\rm\implies \:x = 2 \\

On substituting the value of x in equation (6), we get

\rm \: 2 + y = 3 \\

\rm\implies \:y = 1 \\

Hence,

The solution of equations

\rm \: \dfrac{3}{x + y}  + \dfrac{4}{x - y}  = 5 \\

and

\rm \: \dfrac{4}{x + y}  + \dfrac{1}{3(x - y)}  = 2 \\

is

 \: \boxed{\bf{  \:x \:  =  \: 2 \:  \: }} \:  \:  \: and \:  \:  \: \boxed{\bf{  \: \: y \:  =  \: 1 \:  \: }} \\

Verification :-

Consider

\rm \: \dfrac{3}{x + y}  + \dfrac{4}{x - y}  = 5 \\

On substituting the value of x and y in above equation, we get

\rm \: \dfrac{3}{2 + 1}  + \dfrac{4}{2 - 1}  = 5 \\

\rm \: \dfrac{3}{3}  + \dfrac{4}{1}  = 5 \\

\rm \: 1 + 4 = 5 \\

\rm \: 5 = 5 \\

Hence, Verified

Similar questions