solve (0°≤ Θ ≤90°)
math problem
Answers
Answered by
1
Answer:
x90
Step-by-step explanation:
please mark me as brain list I sapm
sin(x) + 2 = 3
sin(x) = 1
Answered by
2
Answer:
90°
Step-by-step explanation:
cos2 θ – 3 cos θ + 2 = 2 sin2θ
If 0 < θ ≤ 90°
Put θ = 30°, 45°, 60° and 90° and satisfied the equation.
Put θ = 90°
⇒ 0 – 0 + 2 = 2 × 1
⇒ 2 = 2 (satisfied)
Detailed method:
cos2 θ – 3 cos θ + 2 = 2 sin2θ
⇒ cos2 θ – 3 cos θ + 2 = 2 (1 – cos2 θ)
⇒ cos2 θ – 3 cos θ + 2 = 2 – 2 cos2 θ
⇒ cos2 θ – 3 cos θ + 2 cos2θ = 2 – 2
⇒ 3 cos2 θ – 3 cos θ = 0
⇒ cos θ (cos θ – 1) = 0
Case 1 : If cos θ is 0 .
⇒ 3 cos θ = 0
⇒ cos θ = 0
⇒ cos θ = cos90°
θ = 90° or π / 2
Case 2 : If cos θ - 1 is zero.
⇒ cos θ - 1 = 0
⇒ cos θ = 1
⇒ cos θ = cos0°
But given that, θ is greater than 0°, cos θ ≠ cos0°
∴ The required measure of angle θ is 90°.
(◍•ᴗ•◍)
Similar questions