Math, asked by Anonymous, 3 months ago

Solve: 1/1 + 1/1+2 + 1/1+2+3+.. .... ..+1/1+2+3+.... ...+12​

Answers

Answered by ItZzKhushi
8

Answer:

 \frac{1}{1}  +  \frac{1}{1 +2}  +  \frac{1}{1 + 2 + 3}  + .. \: .. +  \frac{1}{1 + 2 + .. + 12}  \\

Sn = T1+T2+T3.. +Tn

Tn =

 \frac{1}{1 + 2 +.. n}

 =  \frac{1}{ \frac{n \times n + 1}{2} }  +  \frac{2}{n \times n + 1} = 2 \frac{1}{1 \times 2}   +  \frac{1}{2 \times 3}  + .. \: .. \: .. +  \frac{1}{n(n + 1)}  \\  = 2( \frac{1}{1}  -  \frac{1}{2}  + \frac{1}{2}.. \: .. +  \frac{1}{n}   -   \frac{1}{n + 1} \\ same \: terms \: will \: be \: cutted.. \\ =  2( \frac{1}{1}  - \frac{1}{n + 1}) \\  = 2 (\frac{1}{1}  -  \frac{1}{12  + 1} ) \\ =  2( \frac{1}{1}  -  \frac{1}{13}) \\  = 2( \frac{13 - 1}{13} ) \\  =  2 \times  \frac{12}{13}  \\  =  \frac{24}{13}

Step-by-step explanation:

Hope this helps You

Happy Learning

Answered by BrainlyCandycrush24
3

Step-by-step explanation:

hi sis I m radha sis

I think u had forgotten me or what

I missing u lot sis..

radhe radhe

jai shri Krishna

Similar questions