Math, asked by provokedguy, 2 months ago

Solve:
1 / 1 - root 2 + root 3

Answers

Answered by legend123890
0

Answer:

After rationalising the given denominator, we get the answer as

\frac { \sqrt { 2 } + 2 + \sqrt { 6 } } { 4 }

4

2

+2+

6

Explanation:

The given expression is,

\frac { 1 } { ( 1 + \sqrt { 2 } - \sqrt { 3 } ) }

(1+

2

3

)

1

Rationalising the denominator

\begin{gathered}\begin{array} { c } { \frac { 1 } { ( 1 + \sqrt { 2 } ) - \sqrt { 3 } } \times \frac { ( ( 1 + \sqrt { 2 } ) + \sqrt { 3 } ) } { ( 1 + \sqrt { 2 } ) + \sqrt { 3 } } } \\\\ { = \frac { ( ( 1 + \sqrt { 2 } ) + \sqrt { 3 } ) } { \left( ( 1 + \sqrt { 2 } ) ^ { 2 } - ( \sqrt { 3 } ) ^ { 2 } \right) } } \end{array}\end{gathered}

(1+

2

)−

3

1

×

(1+

2

)+

3

((1+

2

)+

3

)

=

((1+

2

)

2

−(

3

)

2

)

((1+

2

)+

3

)

(As (a^2-b^2) = (a+b)(a-b)(a

2

−b

2

)=(a+b)(a−b) )

\begin{gathered}\begin{aligned} = & \frac { ( ( 1 + \sqrt { 2 } ) + \sqrt { 3 } ) } { ( ( 1 + 2 + 2 \sqrt { 2 } ) - 3 ) } \\\\ = & \frac { ( ( 1 + \sqrt { 2 } ) + \sqrt { 3 } ) } { 3 + 2 \sqrt { 2 } - 3 } \\\\ & = \frac { ( ( 1 + \sqrt { 2 } ) + \sqrt { 3 } ) } { 2 \sqrt { 2 } } \end{aligned}\end{gathered}

=

=

((1+2+2

2

)−3)

((1+

2

)+

3

)

3+2

2

−3

((1+

2

)+

3

)

=

2

2

((1+

2

)+

3

)

Multiply and divide by \sqrt{2}

2

= \frac { ( ( 1 + \sqrt { 2 } ) + \sqrt { 3 } ) } { 2 \sqrt { 2 } } \times \frac { \sqrt { 2 } } { \sqrt { 2 } }=

2

2

((1+

2

)+

3

)

×

2

2

After rationalising the given denominator, we get the answer as

= \frac { \sqrt { 2 } + 2 + \sqrt { 6 } } { 4 }=

4

2

+2+

6

Similar questions