Math, asked by sujay1010, 8 months ago

solve 1/|2x-1|<6 and express it using interval notation

Answers

Answered by abhi178
15

We have to solve inequality 1/|2x - 1| < 6 using interval notation.

Solution : we see both side of inequality sign are positive so if we reciprocate, sign of inequality will chnage.

I.e., |2x - 1 | > 1/6

now break the modulus function,

2x - 1 = 0 ⇒x = 1/2

case 1 : x > 1/2

(2x - 1) > 1/6

⇒2x - 1 - 1/6 > 0

⇒2x - 7/6 > 0

⇒2x > 7/6

⇒x > 7/12

now put 1/2 and 7/12 in number line and apply their conditions , you get, x > 7/12

Case 2 : x < 1/2

-(2x - 1) > 1/6

⇒-2x + 1 - 1/6 > 0

⇒-2x + 5/6 > 0

⇒5/6 > 2x

⇒x < 5/12

Similarly put 1/2 and 5/12 in number line and apply their conditions, you get x < 5/12

Therefore the value of x ∈ (-∞, 5/12) U (7/12, ∞)

Answered by pulakmath007
84

SOLUTION

TO EXPRESS

 \displaystyle \sf{ \frac{1}{ |2x - 1|}   &lt; 6\: }

in interval notation

CONCEPT TO BE IMPLEMENTED

We are aware of the formula on inequality that

 \sf{ |x - a|  &gt; b \: implies \: x &lt; a - b \: or \: x &gt; a + b \: }

EVALUATION

Here the given inequality is

 \displaystyle \sf{ \frac{1}{ |2x - 1|}   &lt; 6\: }

 \displaystyle \implies \sf{ |2x - 1|   &gt;  \frac{1}{6} \: }

  \displaystyle \implies \sf{ 2x - 1   &gt;  \frac{1}{6} \: \: or \: \:  2 x- 1 &lt;  -  \frac{1}{6} }

Now

 \displaystyle \sf{ 2x - 1   &gt;  \frac{1}{6} } \:   \:  \: \: gives

 \displaystyle \sf{ 2x   &gt;  1 + \frac{1}{6} } \:   \:  \: \:

 \implies \displaystyle \sf{ 2x   &gt;   \frac{7}{6} } \:   \:  \: \:

 \implies \displaystyle \sf{ x   &gt;   \frac{7}{12} } \:   \:  \: \:

 \implies \displaystyle \sf{ x \in \:    \bigg(\frac{7}{12} } \: ,   \infty \bigg)  \: \:

Again

 \displaystyle \sf{ 2x  - 1 &lt;  -  \frac{1}{6}   } \:  \:  \: gives

 \displaystyle \sf{ 2x   &lt; 1 -  \frac{1}{6}   }

 \implies \displaystyle \sf{ 2x   &lt;  \frac{5}{6}   }

 \implies \displaystyle \sf{ x   &lt;  \frac{5}{12}   }

 \implies \displaystyle \sf{ x \in \:    \bigg( -  \infty ,    \frac{5}{12}  \: \bigg)  \: \:}

Hence the required solution of the given inequality is

\displaystyle \sf{ x \in  \bigg(  \frac{7}{12}  ,   \infty  \bigg) \cup\bigg( -  \infty ,    \frac{5}{12}  \: \bigg)  }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

5x^2-8x-4=0 when x belongs to Q.

solve the quadratic equation

https://brainly.in/question/2206314

Similar questions