Math, asked by Anonymous, 1 month ago

Solve:
1. 4/9 ÷ x = -10/3
2. (x^n/x^p)^m × (x^p/x^m)^n × (x^m/x^n)^p
3. 11^4x × 11^-3 = 11 × 121^4​

Answers

Answered by Anonymous
47

Required Answers:

1.  \sf \bf \:  \dfrac{4}{9}  ÷ x = - \dfrac{ - 10}{3}

 \\ 1. \:  \:  \:  \:  \:  \tt{\pmb \:  \dfrac{4}{9}  ÷ x = \dfrac{ - 10}{3}} \\  \\  \\  \tt\:  \implies \:  \: \:  \dfrac{4}{9}   \times   \frac{1}{x}  =  \dfrac{ - 10}{3} \\  \\  \\ \implies  \tt  \:  \dfrac{1}{x} =  \dfrac{ - 10}{3} \div  \frac{4}{9}  \\  \\  \\ \implies  \tt \:  \dfrac{1}{x} =  \dfrac{ - 10}{3}  \times   \frac{9}{4}\\  \\  \\ \implies  \tt  \:  \dfrac{1}{x} =  \dfrac{ \cancel{ - 10}}{ \cancel{3}}  \times   \frac{ \cancel{9}} {\cancel{4}  } \\  \\  \\ \implies  \tt \:  \dfrac{1}{x} =  \dfrac{ - 5}{1}  \times   \frac{3}{2 } \\  \\  \\ \implies  \tt \:  \dfrac{1}{x} =  \dfrac{ - 15}{2}\\  \\  \\ \implies  \tt \:  {x}=  \dfrac{ - 2}{15}  \\

________________________________________

 \sf \bf \: 2. \:  \:  \:   {\bigg( \dfrac{ {x}^{n} }{ {x}^{p} }  \bigg)}^{m}  \times {\bigg( \dfrac{ {x}^{p} }{ {x}^{m} }  \bigg)}^{n}  \times {\bigg( \dfrac{ {x}^{m} }{ {x}^{n} }  \bigg)}^{p}

 \\    \tt \:  \: 1. \:  \:  \:   {\bigg( \dfrac{ {x}^{n} }{ {x}^{p} }  \bigg)}^{m}  \times {\bigg( \dfrac{ {x}^{p} }{ {x}^{m} }  \bigg)}^{n}  \times {\bigg( \dfrac{ {x}^{m} }{ {x}^{n} }  \bigg)}^{p} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \\   \tt\:  =  { \bigg( {x}^{n - p} } \bigg)^{m}  \times { \bigg( {x}^{p- m} } \bigg)^{n}  \times { \bigg( {x}^{m - n} } \bigg)^{p}  \\  \\  \\  \tt =   {x}^{nm - pm}  \times \:  {x}^{pn - mn}  \times  \: {x}^{mp - np}  \\  \\  \\   =  \tt \: {x}^{nm - pm + pn - mn + mp - np}  \\  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt\: =  {x} \: ^ {\cancel{nm - pm + pn - mn + mp - np}} \\  \\  \\   = \tt\:  {x}^{0} \:  \:  \:   \\  \\  \\   \tt  \:  \:  \:  \: = 1 \\  \\

________________________________________

 \sf   \bf\:  \:  \: 3. \:  \:  \:  \:  \:  \:  \:  {11}^{4x + ( - 3)}  = 11 \times  {121}^{4}

 \\ \tt  \:  \:  \: 3. \:  \:  \:  \:  \:  \:  \:  {11}^{4x + ( - 3)}  = 11 \times  {121}^{4}  \\  \\  \\  \implies \tt\:  {11}^{4x - 3}  =  {11}^{1}  \times  {11}^{8}  \\  \\  \\  \tt \implies \:  {11}^{4x - 3}  =  {11}^{(1 + 8)}  \\  \\  \\  \tt \implies \:  {11}^{4x - 3}  =  {11}^{9}  \\  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \: \tt \implies \:  \cancel{11} \: ^{4x - 3}  =   \cancel{11} \: ^{9} \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \tt \implies \: 4x - 3 = 9 \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \implies \: 4x = 9 + 3 \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \implies4x = 12 \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \implies \: x =  \frac{12}{4}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies\tt \: x = 3 \\  \\

________________________________________

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Hence Solved!!

⠀⠀⠀⠀⠀⠀⠀⠀⠀Hope it Helps uh :)

Similar questions