solve 1/a+b+x=1/a+1/b+1/c
Attachments:
Answers
Answered by
1
1/a+b+c- 1\x= 1/a+1/b
x-(a+b+x)/x(a+b+x) = b+a/ab
x-a-b-x/ x(a+b+x)= b+a/ab
-a-b/x(a+b+x)= b+a/ab
-1/x(a+b+x)= 1/ab
-ab=x(a+b+x)
-ab= ax+ bx+x^2
x^2+bx+ax+ab
x(x+b) a(x+b)
(x+a)(x+b)
x=-a ...x=-b
x-(a+b+x)/x(a+b+x) = b+a/ab
x-a-b-x/ x(a+b+x)= b+a/ab
-a-b/x(a+b+x)= b+a/ab
-1/x(a+b+x)= 1/ab
-ab=x(a+b+x)
-ab= ax+ bx+x^2
x^2+bx+ax+ab
x(x+b) a(x+b)
(x+a)(x+b)
x=-a ...x=-b
Answered by
3
Answer:
Given :
Now take 1 / x in L.H.S. side :
Taking L.C.M and solving it further :
x² + a x + b x + a b = 0
x ( x + a ) + b ( x + a ) = 0
( x + a ) ( x + b ) = 0
x + a = 0 or x + b = 0
x = - a or x = - b .
Therefore , the value of x is - a or - b .
Similar questions