Math, asked by gk758427, 10 months ago

Solve:
1/a+b+x=1/a+1/b+1/x ,(a+b≠c)

Answers

Answered by vyom12595
1

Answer:

Plz follow

Step-by-step explanation:

1/(a+b+x)=1/a + 1/b + 1/x

1/(a+b+x)=(bx+ax+ab)/abx

abx=abx+a2x+a2b+b2x+abx+ab2+bx2+ax2+abx

ax2+bx2+a2x+abx+abx+b2x+a2b+ab2=0

x2(a+b)+ax(a+b)+bx(a+b)+ab(a+b)=0

(a+b)(x2+ax+bx+ab)=0

since, a+b!=0

so, x2+ax+bx+ab=0

x(x+a)+b(x+a)=0

(x+a)(x+b)=0

x=-a,-b

Answered by VishalSharma01
25

Answer:

Step-by-step explanation:

Given :-

1/a + b + x = 1/a + 1/b + 1/x

⇒ 1/a + b + x - 1/x = 1/a + 1/b

⇒ x - (a + b + x)/x(a + b + x) = a + b/ab

⇒ x - a - b - x/x(a + b + x) = a + b/ab

⇒ -(a + b)/x(a + b + x) = a + b/ab

⇒ x(a + b + x) = - ab

⇒ x² + (a + b)x + ab = 0

⇒ (x + a) (x + b) = 0

x = - a or x = - b

Answering Tips :-

Adequate practice is necessary for simplifying these type of quadratic Equation.

Commonly Made error :-

Students do error in simplifying these type of equations.

Similar questions