Solve:
1/a+b+x=1/a+1/b+1/x ,(a+b≠c)
Answers
Answer:
Plz follow
Step-by-step explanation:
1/(a+b+x)=1/a + 1/b + 1/x
1/(a+b+x)=(bx+ax+ab)/abx
abx=abx+a2x+a2b+b2x+abx+ab2+bx2+ax2+abx
ax2+bx2+a2x+abx+abx+b2x+a2b+ab2=0
x2(a+b)+ax(a+b)+bx(a+b)+ab(a+b)=0
(a+b)(x2+ax+bx+ab)=0
since, a+b!=0
so, x2+ax+bx+ab=0
x(x+a)+b(x+a)=0
(x+a)(x+b)=0
x=-a,-b
Answer:
Step-by-step explanation:
Given :-
1/a + b + x = 1/a + 1/b + 1/x
⇒ 1/a + b + x - 1/x = 1/a + 1/b
⇒ x - (a + b + x)/x(a + b + x) = a + b/ab
⇒ x - a - b - x/x(a + b + x) = a + b/ab
⇒ -(a + b)/x(a + b + x) = a + b/ab
⇒ x(a + b + x) = - ab
⇒ x² + (a + b)x + ab = 0
⇒ (x + a) (x + b) = 0
⇒ x = - a or x = - b
Answering Tips :-
Adequate practice is necessary for simplifying these type of quadratic Equation.
Commonly Made error :-
Students do error in simplifying these type of equations.