Solve
1/a+b+x =1/a + 1/b + 1/x where a+b is not equal to zero, ab is not equal to zero
Answers
Answered by
3
Answer:
Step-by-step explanation:
Simply solve quadratic equation
{1/(a+b+x)}=(1/a)+(1/b)+(1/x)
{1/(a+b+x)}-(1/a) = (1/b)+(1/x)
{(a-a-b-x)/a(a+b+x)}=(b+x/bx)
{-(b+x)}/a(a+b+x)=(b+x)/bx
.....
solve
x=-a, x=-b
OR
1/(a+b+x)=1/a + 1/b + 1/x
1/(a+b+x)=(bx+ax+ab)/abx
abx=abx+a2x+a2b+b2x+abx+ab2+bx2+ax2+abx
ax2+bx2+a2x+abx+abx+b2x+a2b+ab2=0
x2(a+b)+ax(a+b)+bx(a+b)+ab(a+b)=0
(a+b)(x2+ax+bx+ab)=0
since, a+b!=0
so, x2+ax+bx+ab=0
x(x+a)+b(x+a)=0
(x+a)(x+b)=0
x=-a,-b
Answered by
0
Answer:
Step-by-step explanation:
Similar questions
History,
6 months ago
Economy,
6 months ago
Hindi,
1 year ago
Environmental Sciences,
1 year ago
Environmental Sciences,
1 year ago