Math, asked by sharan2268, 1 year ago


Solve

1/a+b+x =1/a + 1/b + 1/x where a+b is not equal to zero, ab is not equal to zero

Answers

Answered by pancypoppy1234
3

Answer:

Step-by-step explanation:

Simply solve quadratic equation

{1/(a+b+x)}=(1/a)+(1/b)+(1/x)

{1/(a+b+x)}-(1/a) = (1/b)+(1/x)

{(a-a-b-x)/a(a+b+x)}=(b+x/bx)

{-(b+x)}/a(a+b+x)=(b+x)/bx

.....

solve

x=-a, x=-b

OR

1/(a+b+x)=1/a + 1/b + 1/x

1/(a+b+x)=(bx+ax+ab)/abx

abx=abx+a2x+a2b+b2x+abx+ab2+bx2+ax2+abx

ax2+bx2+a2x+abx+abx+b2x+a2b+ab2=0

x2(a+b)+ax(a+b)+bx(a+b)+ab(a+b)=0

(a+b)(x2+ax+bx+ab)=0

since, a+b!=0

so, x2+ax+bx+ab=0

x(x+a)+b(x+a)=0

(x+a)(x+b)=0

x=-a,-b

Answered by B509
0

Answer:

Step-by-step explanation:

Similar questions