Math, asked by Mayuri1546, 3 months ago

Solve!!
1/(a+b+x) = 1/a + 1/b + 1/x
[x ≠ 0, x ≠ -(a+b)]​

Answers

Answered by UtsavPlayz
3

 \dfrac{1}{a + b + x}  =  \dfrac{1}{a}  +  \dfrac{1}{b}  +  \dfrac{1}{x}

 \dfrac{1}{a + b + x}  -  \dfrac{1}{x}  =  \dfrac{1}{a}  +  \dfrac{1}{b}

 \dfrac{x - (a + b + x)}{(a + b + x)(x)}  =  \dfrac{a + b}{ab}

 \dfrac{ - \cancel{ ( a  + b)}}{ax + bx +  {x}^{2} }  =  \dfrac{ \cancel{(a + b)}}{ab}

 - ab =  {x}^{2}  + ax + bx

 {x}^{2}  + ax + bx  + ab = 0

x(x + a) + b(x + a) = 0

(x + a)(x + b) = 0

 \implies  \boxed{ x =  - a, - b}

Answered by BrainlyTwinklingstar
1

Answer

We have,

\dashrightarrow \sf \dfrac{1}{(a + b + x)} = \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{x}

\dashrightarrow \sf \dfrac{1}{(a + b + x)} - \dfrac{1}{x} = \dfrac{1}{a} + \dfrac{1}{b}

\dashrightarrow \sf \dfrac{x - (a + b + x)}{x (a + b + x)} = \dfrac{b + a}{ab}

\dashrightarrow \sf \dfrac{- (a + b)}{x (a + b + x)} = \dfrac{a + b}{ab}

On dividing both sides by (a + b)

\sf \dashrightarrow \dfrac{-1}{x (a + b + x)} = \dfrac{1}{ab}

By cross multiplication,

\dashrightarrow \sf x (a + b + x) = -ab

\dashrightarrow \sf {x}^{2} + ax + bx + ab = 0

\dashrightarrow \sf x (x + a) + b (x + a) = 0

\dashrightarrow \sf (x + a) (x + b) = 0

\dashrightarrow \sf x + a = 0 \: \: or \: \: x + b = 0

\sf \dashrightarrow x = -a \: \: or \: \: x = -b

Thus, -a and -b are the roots of the given equation.

Similar questions