Math, asked by Agashi22, 1 year ago

Solve: √1+cos x÷√1-cos x + √1-cos x ÷ √1+cos x

Answers

Answered by kaushik1978kr
0

Answer:

LHS = 1/sin x(1/cos x-1) - cos x/sinx (1-cos x)

=1-cos x/sin xcos x -( 1-cosx) cosx/sinx

=(1-cosx/sinx)[1/cosx - cosx]

=(1-cosx/sinx)sin*2x/cosx

=(1-cosx)sinx/cosx

=sinx/cosx -sinx

=tanx-sinx=RHS

HENCE LHS=RHS

Read more on Brainly.in - https://brainly.in/question/2951463#readmore

Answered by RvChaudharY50
111

\Large\underline\mathfrak{Solve} :---

    \green{\boxed{\bf \: \sqrt{\frac{1+cosx}{1-cosx}} + \sqrt{\frac{1 - cosx}{1 + cosx}}}}

\Large\bold\star\underline{\underline\textbf{Formula\:used}}

  • (a+b)(a-b) = a² - b²
  • 1 - cos²x = sin²x
  • √(a)² = a

____________________________

\bigstar\underline{\red{\mathbb{LET'S  \: \color{lime}{SOLVE} \:  \color{fuchsia}{THE}\:  \color{aqua}{PROBLEM}}}}\bigstar \:

\Large\bold\star\underline{\underline\textbf{Part(1)}}

 \sf \: \sqrt{\frac{1+cosx}{1-cosx}} \:  =  \\  \\   \orange{\sf \: multiply \: and \: divide \: by \: ( 1+ cosx)we \: get} \\  \\\red\leadsto\rm\sqrt{\frac{1+cosx}{1-cosx} \times \frac{1 + cosx}{1 + cosx}} \\  \\ \\\red\leadsto\rm \:  \sqrt{ \frac{(1 + cosx)^{2} }{1 - cos^{2}x } } \\  \\ \\\red\leadsto \pink{\boxed{\bf \: \dfrac{1 + cosx}{sinx}}}

_____________________________

\Large\bold\star\underline{\underline\textbf{Part(2)}}

\sf \: \sqrt{\frac{1 - cosx}{1 + cosx}} \:  =  \\  \\   \blue{\sf \: multiply \: and \: divide \: by \: ( 1 -  cosx) \: we \: get} \\  \\\red\leadsto\rm\sqrt{\frac{1 - cosx}{1 + cosx} \times \frac{1  -  cosx}{1  -  cosx}} \\  \\ \\\red\leadsto\rm \:  \sqrt{ \frac{(1  -  cosx)^{2} }{1 - cos^{2}x } } \\  \\ \\\red\leadsto \purple{\boxed{\bf \: \dfrac{1  -  cosx}{sinx}}} \:

_____________________________

   \red{\underline\textbf{Adding Part(1) and Part(2) Now, we get,}}

\red\leadsto \sf \dfrac{1 + cosx}{sinx} +  \dfrac{1 - cosx}{sinx} \\  \\ \red\leadsto \rm \:  \dfrac{1 +  \cancel{cosx} + 1 -  \cancel{cosx}}{sinx} \\  \\ \red\leadsto \: \bold{\boxed{\large{\boxed{\orange{\small{\boxed{\large{\red{\bold{\: \frac{2}{sinx} }}}}}}}}}}

______________________________

Similar questions