Math, asked by sagargpoojary36, 10 months ago

solve : 1+cosx /sinx=sinx/1+cosx = 2cotx​

Answers

Answered by TheVenomGirl
3

\bold{\large{\underline{\underline{\rm{\red{Correct\: Question:-}}}}}}

  • prove ((sinx)/(1-cosx)-(sinx)/(1+cosx))=2cotx

\bold{\underline{\underline{\large{\rm{\orange{Answer:-}}}}}}

 \sf \: LHS = \dfrac{(( \sin x)(1 +  \cos x) -  ( \sin x)(1  -   \cos x))}{((1  -   \cos x)(1   +   \cos x)}

 \\  \\  \longmapsto \sf \dfrac{( \sin x(1+ \cos x - 1 +  \cos x))}{(1 -  \cos^2 x)}  \\  \\

 \\   \\   \longmapsto \sf\dfrac{ \sin x (2 \cos x)}{ \sin^2  x} \: { \red{ \tiny{(since  \:  \sin^2 x +  \cos^2 x = 1,\sin^2 x = 1- \cos^2 x)}}}

 \\  \\  \longmapsto \sf \:  \dfrac{2 \  cos x}{ \sin x}  \\  \\

 \\   \\ \longmapsto { \large{\boxed{\pink{\sf \: {2 \cot x}}}}} \\  \\

 \\  \\  \longmapsto \sf \: RHS \\  \\

{ \underline{ \underline{ \blue {\sf {\large{Hence \:  Proved.}}}}}}

Answered by loharawattr62
0

Answer:

Step-by-step explanation:

Similar questions